Precise control over the monomeric sequence on natural sequence-defined polymers (SDPs) leads to their structural diversity and functions. However, absolute control over the monomeric sequence on a synthetic polymer remains a challenging process. Herein, we describe a supportfree, protection−deprotection-free, cost-effective, and fast iterative strategy for multigram production of a new class of SDP with a unique functional group, dithiocarbamate, a potential group for material and biomedical applications. The strategy is based on a unique monomer, named as amine-hydroxyl monomer, and a three-component reaction between the monomer, CS 2 , and terminal chloro group of the growing chain. The fast strategy allows us to synthesize a 5mer sequence-defined oligomer in 6 h. For a proof of concept, a range of aliphatic and aromatic groups have been incorporated at different sequences in the sequence-defined oligomer. This SDP platform has further been advanced by two ways: (i) multiple approaches for postsynthetic modification of SDP and (ii) increasing the chain length in a single step.
A modular synthetic platform for selective sensing and removal of Hg2+ was developed. This modular system possesses a unique feature to gradually improve the sensitivity even in competitive environments via...
A modular platform for the synthesis of tunable aza-oxa-based macrocycles was established. Modulations in the backbone and the side-chain functional groups have been rendered to achieve the tunable property. These aza-oxa-based macrocycles can also differ in the number of heteroatoms in the backbone and the ring size of the macrocycles. For the proof of concept, a library of macrocycles was synthesized with various hanging functional groups, different combinations of heteroatoms, and ring sizes in the range of 17–27 atoms and was characterized by NMR and mass spectrometry. In light of the importance of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and the significance of triazole groups for various applications, we employed the click-reaction-based macrocyclization. The competence of the synthesized macrocycles in various biomedical applications was proven by studying the interactions with the serum albumin proteins; bovine serum albumin and human serum albumin. It was observed that some candidates, based on their hanging functional groups and specific backbone atoms, could interact well with the protein, thus improving the bioactive properties. On the whole, this work is a proof-of-concept to explore the backbone- and side-chain-tunable macrocycle for different properties and applications.
Structural diversity and tunable properties achieved by the defined monomeric sequence are the trademarks of a sequence-defined polymer. Herein, we report a modular synthetic platform where, in addition to the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.