The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived stem cells (ASCs) cultured under conditions of static magnetic field. Investigated cells were exposed to a static magnetic field (MF) with the intensity of 0.5 T. In order to investigate the effects of magnetic field on stem cell signaling, the localization and density and content of microvesicles (MVs) as well as morphology, ultrastructure, and proliferation rate of equine ASCs were evaluated. Results showed that potential of equine adipose-derived mesenchymal stem cells was accelerated when magnetic field was applied. Resazurin-based assay indicated that the cells cultured in the magnetic field reached the population doubling time earlier and colony-forming potential of equine ASCs was higher when cells were cultured under magnetic field conditions. Morphological and ultrastructural examination of equine ASCs showed that the exposure to magnetic field did not cause any significant changes in cell morphology whereas the polarity of the cells was observed under the magnetic field conditions in ultrastructural examinations. Exposition to MF resulted in a considerable increase in the number of secreted MVs—we have clearly observed the differences between the numbers of MVs shed from the cells cultured under MF in comparison to the control culture and were rich in growth factors. Microvesicles derived from ASCs cultured in the MF condition might be utilized in the stem cell-based treatment of equine musculoskeletal disorders and tendon injuries.
Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure.
The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs) and bone marrow multipotent stromal cells (BMSCs) cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCL). Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX). Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.