International audienceUp-scaling silicon nanowire (SiNW)-based functionalities requires a reliable strategy to precisely position and integrate individual nanowires. We here propose an all-in-situ approach to fabricate self-positioned/aligned SiNW, via an in-plane solid-liquid-solid growth mode. Prototype field effect transistors, fabricated out of in-plane SiNWs using a simple bottom-gate configuration, demonstrate a hole mobility of 228 cm2/V s and on/off ratio >103. Further insight into the intrinsic doping and structural properties of these structures was obtained by laser-assisted 3 dimensional atom probe tomography and high resolution transmission electron microscopy characterizations. The results could provide a solid basis to deploy the SiNW functionalities in a cost-effective way
International audienceSilicon nanowires (SiNWs) are synthesized following two methods: i) the VLS (Vapor-Liquid-Solid) growth technique (bottom up approach), and ii) the sidewall spacer fabrication (top down approach) commonly used in microelectronic industry. The VLS growth technique uses gold nanoparticles to activate the vapor deposition of the precursor gas and to initiate 100 nm diameter SiNWs network growth. In the case of the sidewall spacer method, a polysilicon layer is deposited by LPCVD (Low Pressure Chemical Vapor Deposition) technique on SiO2 wall patterned by conventional UV lithography technique. Polysilicon film is then plasma etched. Accurate control of the etching rate leads to the formation of spacers with a 100 nm curvature radius that can be used as polysilicon NWs. Each kind of nanowires is integrated into resistors fabrication. Electrical measurements show the potential use of these SiNWs based resistors as gas sensors for ammonia (NH3) and smoke detection
Currently, detection of DNA hybridization using fluorescence-based detection technique requires expensive optical systems and complex bioinformatics tools. Hence, the development of new low cost devices that enable direct and highly sensitive detection stimulates a lot of research efforts. Particularly, devices based on silicon nanowires are emerging as ultrasensitive electrical sensors for the direct detection of biological species thanks to their high surface to volume ratio. In this study, we propose innovative devices using step-gate polycrystalline silicon nanowire FET (poly-Si NW FETs), achieved with simple and low cost fabrication process, and used as ultrasensitive electronic sensor for DNA hybridization. The poly-SiNWs are synthesized using the sidewall spacer formation technique. The detailed fabrication procedure for a step-gate NWFET sensor is described in this paper. No-complementary and complementary DNA sequences were clearly discriminated and detection limit to 1 fM range is observed. This first result using this nano-device is promising for the development of low cost and ultrasensitive polysilicon nanowires based DNA sensors compatible with the CMOS technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.