In this study, 520 cultivated and 14 wild accessions of black gram (Vigna mungo (L.) Hepper) were assessed for diversity using 22 SSR markers. Totally, 199 alleles were detected with a mean of 9.05 alleles per locus. Wild black gram showed higher gene diversity than cultivated black gram. Gene diversity of cultivated accessions among regions was comparable, while allelic richness of South Asia was higher than that of other regions. 78.67% of the wild gene diversity presented in cultivated accessions, indicating that the domestication bottleneck effect in black gram is relatively low. Genetic distance analysis revealed that cultivated black gram was more closely related to wild black gram from South Asia than that from Southeast Asia. STRUCTURE, principal coordinate and neighbor-joining analyses consistently revealed that 534 black gram accessions were grouped into three major subpopulations. The analyses also revealed that cultivated black gram from South Asia was genetically distinct from that from West Asia. Comparison by SSR analysis with other closely related Vigna species, including mungbean, azuki bean, and rice bean, revealed that level of gene diversity of black gram is comparable to that of mungbean and rice bean but lower than that of azuki bean.
Nearly all mungbean cultivars are completely susceptible to seed bruchids (Callosobruchus chinensis and Callosobruchus maculatus). Breeding bruchid-resistant mungbean is a major goal in mungbean breeding programs. Recently, we demonstrated in mungbean (Vigna radiata) accession V2802 that VrPGIP2, which encodes a polygalacturonase inhibiting protein (PGIP), is the Br locus responsible for resistance to C. chinensis and C. maculatus. In this study, mapping in mungbean accession V2709 using a BC11F2 population of 355 individuals revealed that a single major quantitative trait locus, which controlled resistance to both C. chinensis and C. maculatus, was located in a 237.35 Kb region of mungbean chromosome 5 that contained eight annotated genes, including VrPGIP1 (LOC106760236) and VrPGIP2 (LOC106760237). VrPGIP1 and VrPGIP2 are located next to each other and are only 27.56 Kb apart. Sequencing VrPGIP1 and VrPGIP2 in “V2709” revealed new alleles for both VrPGIP1 and VrPGIP2, named VrPGIP1-1 and VrPGIP2-2, respectively. VrPGIP2-2 has one single nucleotide polymorphism (SNP) at position 554 of wild type VrPGIP2. This SNP is a guanine to cystine substitution and causes a proline to arginine change at residue 185 in the VrPGIP2 of “V2709”. VrPGIP1-1 has 43 SNPs compared with wild type and “V2802”, and 20 cause amino acid changes in VrPGIP1. One change is threonine to proline at residue 185 in VrPGIP1, which is the same as in VrPGIP2. Sequence alignments of VrPGIP2 and VrPGIP1 from “V2709” with common bean (Phaseolus vulgaris) PGIP2 revealed that residue 185 in VrPGIP2 and VrPGIP1 contributes to the secondary structures of proteins that affect interactions between PGIP and polygalacturonase, and that some amino acid changes in VrPGIP1 also affect interactions between PGIP and polygalacturonase. Thus, tightly linked VrPGIP1 and VrPGIP2 are the likely genes at the Br locus that confer bruchid resistance in mungbean “V2709”.
Winged bean [Psophocarpus tetragonolobus (L.) DC.] (2n = 2× = 18) is a tropical legume crop with multipurpose usages. Recently, the winged bean has regained attention from scientists as a food protein source. Currently, there is no breeding program for winged bean cultivars. All winged bean cultivars are landraces or selections from landraces. Molecular markers and genetic linkage maps are pre-requisites for molecular plant breeding. The aim of this study was to develop a high-density linkage map and identify quantitative trait loci (QTLs) for pod and seed-related traits of the winged bean. An F2 population of 86 plants was developed from a cross between winged bean accessions W054 and TPT9 showing contrasting pod length, and pod, flower and seed colors. A genetic linkage map of 1384 single nucleotide polymorphism (SNP) markers generated from restriction site-associated DNA sequencing was constructed. The map resolved nine haploid chromosomes of the winged bean and spanned the cumulative length of 4552.8 cM with the number of SNPs per linkage ranging from 36 to 218 with an average of 153.78. QTL analysis in the F2 population revealed 31 QTLs controlling pod length, pod color, pod anthocyanin content, flower color, and seed color. The number of QTLs per trait varied between 1 (seed length) to 7 (banner color). Interestingly, the major QTLs for pod color, anthocyanin content, and calyx color, and for seed color and flower wing color were located at the same position. The high-density linkage map QTLs reported in this study will be useful for molecular breeding of winged beans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.