The effects of Crotalus durissus terrificus venom (Cdt) were analyzed with respect to the susceptibility and the inflammatory mediators in an experimental model of severe envenomation. BALB/c female mice injected intraperitoneally presented sensibility to Cdt, with changes in specific signs, blood biochemical and inflammatory mediators. The venom induced reduction of glucose and urea levels and an increment of creatinine levels in serum from mice. Significant differences were observed in the time-course of mediator levels in sera from mice injected with Cdt. The maximum levels of IL-6, NO, IL-5, TNF, IL-4 and IL-10 were observed 15 min, 30 min, 1, 2 and 4 hours post-injection, respectively. No difference was observed for levels of IFN-γ. Taken together, these data indicate that the envenomation by Cdt is regulated both pro- and anti-inflammatory cytokine responses at time-dependent manner. In serum from mice injected with Cdt at the two first hours revealed of pro-inflammatory dominance. However, with an increment of time an increase of anti-inflammatory cytokines was observed and the balance toward to anti-inflammatory dominance. In conclusion, the observation that Cdt affects the production of pro- and anti-inflammatory cytokines provides further evidence for the role played by Cdt in modulating pro/anti-inflammatory cytokine balance.
SummaryThe research described here is focused upon studying the activation of mice peritoneal macrophages when submitted to in vitro effects of Tityus serrulatus scorpion venom and its major toxic peptides. Several functional events were analysed, such as: cytotoxicity, spreading, extent of phagocytosis, vacuole formation and changes of internal calcium concentration. Among the main results observed, when macrophages are subjected to the effects of soluble venom of Tityus serrulatus scorpion venom, a partially purified fraction (FII) or a pure toxin (Ts1), are an increment in the percentage of phagocytosis and vacuole formation, a decrement of the spreading ability, accompanied by oscillations of internal calcium concentration. The net results demonstrate that scorpion venom or its major toxins are effective stimulators of macrophage activity; the effect of whole soluble venom or partially purified fractions is due to the toxic peptides, seen here clearly with Ts1. The possible involvement of Na + -channels in these events is discussed. A basic understanding of the underlying molecular mechanisms responsible for macrophage activation should serve as a foundation for novel drug development aimed at modulating macrophage activity.
Crotalus durissus terrificus venom (Cdt) is toxic for a variety of eukaryotic cells, especially at high concentrations. However its effects on host immune cells are not well known. The purpose of this study was to determine the effect of Cdt on functional status and the mediators production in peritoneal macrophages. The effects of Cdt were analyzed in vitro and were detected using functional status of macrophages as determined by the H2O2 release, spreading percentage, phagocytic index, vacuole formation, and mediators production. Several functional bioassays were employed: cytotoxicity was determined by taking the lyses percentage and the presence of hydrogen peroxide (H2O2) in macrophages, using the horseradish peroxidase-dependent oxidation of phenol red and nitric oxide (NO) in the supernatants of macrophages by the Griess reaction. The tumor necrosis factor (TNF) activity was detected by measuring its cytotoxic activity on L929 cells, and the production the level of other cytokines was assayed using enzyme-linked immunosorbent assay. In vitro studies revealed that Cdt produced (a) a discrete increase in the release of H2O2 and vacuole formation; (b) a decrease in spreading percentage and in the phagocytic index; and (c) an increment in the mediators production. More pronounced increments of IL-6 and TNF were observed after 24 and 48 hours, respectively. Maximum levels of IFN-γ and NO were observed after 96 hours. Interestingly, levels of all mediators presented a discreet decrease, as the amount of Cdt was increased. In contrast, the IL-10 levels observed for all doses studied here did not alter. The IL-6/IL-10 ratio may possibly reflect the balance of pro- and anti-inflammatory cytokines in macrophages, which may be manifested in the inflammatory status during the envenoming processes. Taken together, these data indicate that Cdt have a differential effect on macrophage activation and that this venom is a potent inhibitor of anti-inflammatory response.
In this study, we investigated in groups of female BALB/c mice injected with Crotalus durissus terrificus venom (Cdt) the renal function based on creatinine clearance, percentage of fractional excretion cytokines and histological examination of renal tissue. Cdt caused renal alterations that induced proteinuria during the initial hours post-venom and reduced creatinine clearance 15 min. up to 2 hours post-venom administration. In urine from mice injected with Cdt induced a decrease in IL-4 levels. More pronounced increments of IL-5, IL-6 and IFN-γ were observed after 15 and 30 min, respectively. The highest levels of TNF and IL-10 were observed at 1 and 4 hs, respectively. The ratios of pro- and anti-inflammatory cytokines in animals injected with Cdt, which may be manifested in the inflammatory status during the envenoming. In groups of animals treated with Cdt were observed a decreasing in creatinine clearance and its effect on glomerular filtration rate was accompanied by decreased fractional excretion of cytokines and morphologic disturbances. This loss of change selectively in envenomation could thus explain why the relatively excretion of cytokines is reduced while of total proteins increases. In conclusion the fractional excretion of cytokines is significantly reduced in mice injected with Cdt, despite proteinuria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.