Antibiotic resistance (ABR) is a growing public health concern worldwide, and it is now regarded as a critical One Health issue. One Health’s interconnected domains contribute to the emergence, evolution, and spread of antibiotic-resistant microorganisms on a local and global scale, which is a significant risk factor for global health. The persistence and spread of resistant microbial species, and the association of determinants at the human-animal-environment interface can alter microbial genomes, resulting in resistant superbugs in various niches. ABR is motivated by a well-established link between three domains: human, animal, and environmental health. As a result, addressing ABR through the One Health approach makes sense. Several countries have implemented national action plans based on the One Health approach to combat antibiotic-resistant microbes, following the Tripartite’s Commitment Food and Agriculture Organization (FAO)-World Organization for Animal Health (OIE)-World Health Organization (WHO) guidelines. The ABR has been identified as a global health concern, and efforts are being made to mitigate this global health threat. To summarize, global interdisciplinary and unified approaches based on One Health principles are required to limit the ABR dissemination cycle, raise awareness and education about antibiotic use, and promote policy, advocacy, and antimicrobial stewardship.
The implants are increasingly being a part of modern medicine in various surgical procedures for functional or cosmetic purposes. The progressive use of implants is associated with increased infectious complications and prevention of such infections always remains precedence in the clinical settings. The preventive approaches include the systemic administration of antimicrobial agents before and after the surgical procedures as well as the local application of antibiotics. The relevant literature and existing clinical practices have highlighted the role of antimicrobial coating approaches in the prevention of implants associated infections, although the applications of these strategies are not yet standardized, and the clinical efficacy is not much clear. The adequate data from the randomized control trials is challenging because of the unavailability of a large sample size although it is compulsory in this context to assess the clinical efficacy of preemptive practices. This review compares the efficacy of preventive approaches and the prospects of antimicrobial-coated implants in preventing implant-related infections.
The role of angiogeneses during the growth and progression of tumors is well documented. Likewise, a balance is generally maintained between the cellular proliferation and the apoptosis, therefore, the tumors can persist for years in a dormant phase. During the past few years, many hypotheses have been proposed relating to the importance of tumor angiogenesis for the development and spread of tumors and preventive or therapeutic capacity of angiogenesis inhibitors as a potential target for controlling the growth of cancerous tissue. The antiangiogenic based therapeutic approaches are considered as the most promising method for the control of tumors, as this therapeutic approach is less likely to attain the drug resistance. Further, the tumor vasculature is an important prognostic marker that can independently predict the pathological stages as well as the metastatic potential of tumors. Various biologically active phytochemicals have been extracted from the dietary sources and the plants that have engaged the scientist and pharmaceutical industries around the globe. The antioxidant, antiinflammatory, anti-proliferative and anti-angiogenic potential of these bioactive phytochemicals is evident from the in vitro studies using cell lines and investigations involving the animal models..The present review is focused on the promising role of anti-angiogenesis-based therapies for the management of tumors and the recent developments relating to the interplay of phytochemicals and angiogenesis for the suppression of tumor cells.
Depression and anxiety are the most common disorders among all age groups. Several antidepressant drugs including benzodiazepine, antidepressant tricyclics, azapirone, noradrenaline reuptake inhibitors, serotonin selective reuptake inhibitors, serotonin, noradrenaline reuptake inhibitors, and monoamine oxidase inhibitors have been used to treat these psychiatric disorders. However, these antidepressants are generally synthetic agents and can cause a wide range of side effects. The potential efficacy of plant-derived alkaloids has been reviewed against various neurodegenerative diseases including Alzheimer’s disease, Huntington disease, Parkinson’s disease, schizophrenia, and epilepsy. However, data correlating the indole alkaloids and antidepressant activity are limited. Natural products, especially plants and the marine environment, are rich sources of potential new drugs. Plants possess a variety of indole alkaloids, and compounds that have an indole moiety are related to serotonin, which is a neurotransmitter that regulates brain function and cognition, which in turn alleviates anxiety, and ensures a good mood and happiness. The present review is a summary of the bioactive compounds from plants and marine sources that contain the indole moiety, which can serve as potent antidepressants. The prospects of naturally occurring as well as synthetic indole alkaloids for the amelioration of anxiety and depression-related disorders, structure-activity relationship, and their therapeutic prospects have been discussed.
Background: Relative telomere length (RTL), the biological chronometer, varies considerably among individuals under the influence of multiple risk factors such as socioeconomic status (SES). It is anticipated that during fetal life, telomeres undergo reprogramming. The purpose of this study is to find the association between SES and telomere length of mother-newborn and genetic remodeling that occurs during fetal life. Results: The mean telomere/single gene copy (T/S) ratio and RTL (base pairs) among 250 mother-newborn dyads were higher in cord blood of newborns (1.18 ± 0.23) (6765 ± 1350 bp) (95% confidence level) compared to maternal blood (1.13 ± 0.18) (6432 ± 1350 bp) of all SES of the Pakistani population. A positive association (r = 0.396, p < 0.05) (F (2,238) = 9.229, p < 0.05) was found between maternal and newborn telomere length by using Spearman's correlation and regression analyses. Calculated RTL by Kruskal Wallis was found significant in low SES maternal and cord blood (5916 ± 754-6214 ± 596) compared to high SES maternal and cord blood (6818 ± 1248-7471 ± 1851). Conclusion: Significantly longer RTL in cord blood than maternal blood was observed in the targeted Pakistani population, including the low socioeconomic group highlighting fetal telomere reprogramming. High education appears to have a strong determining factor for longer RTL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.