In plant genetic engineering, the identification of gene promoters leading to particular expression patterns is crucial for the development of new genetically modified plant generations. This research was conducted in order to isolate and characterize several new promoters from cassava (Manihot esculenta Crantz) elongation factor 1 alpha (EF1A) gene family. Three promoters MeEF1A3, MeEF1A4 and MeEF1A5 were successfully isolated. Sequence analyses showed that all of the promoters contain three conserved putative cis-acting elements which are located upstream of the transcription start site. These elements are included a TEF1, a TELO and TATA boxes. In addition, all of the promoters also have the 5′UTR intron but with a different lengths. These promoters were constructed translationally with gusA reporter gene (promoter::gusA fusion) in pBI-121 binary vector to build a new binary vector using Overlap Extension PCR Cloning (OEPC) technique. Transient expression assay that was done by using agroinfiltration method was used to show functionality of these promoters. Qualitative and quantitative analysis from GUS assay showed that these promoters were functional and conferred a specific activity in tobacco seedlings (Nicotiana tabacum), tomato fruits (Solanum lycopersicum) and banana fruits (Musa acuminata). We hypothesized that MeEF1A6 could be categorized as a constitutive promoter because it was able to drive the gene expression in all transformed tissue described in here and also comparable to CaMV35S. On the other hand, MeEF1A3 drove specific expression in the aerial parts of seedlings such as hypocotyl and cotyledon thus MeEF1A5 drove specific expression in fruit tissue. The results obtained from transient analysis showed that these promoters had a distinct activity although they came from same gene family. The DNA sequences identified here are new promoters potentially use for genetic engineering in cassava or other plants.
Abstract. Budiman LF, Apriyanto A, Pancoro A, Sudarsono S. 2019. Genetic diversity analysis of Tenera × Tenera and Tenera × Pisifera Crosses and D self of oil palm (Elaeis guineensis) parental populations originating from Cameroon. Biodiversitas 20: 937-949. There are three types of oil palm (Elaeis guineensis Jacq.) based on the shell thickness, such as the Dura (D type, with a thick shell), the Pisifera (P type, with no or very thin shell) and the Tenera (T type, with medium shell thickness), respectively. The T type is a commercially grown oil palm, originated from hybridization between D × P types. The success of oil palm breeding depends on the availability of diverse parental populations, especially in the D and the P types. Unfortunately, the improved P type of oil palm may only be produced by crossing between Tenera (T × T) or between Tenera and Pisifera (T × P) while improved D type may easily be produced from selfing of a single Dura type palm (D self). Therefore, evaluation of the potential genetic diversity of Dura parental lines derived from D self and Pisifera lines derived from T × T or T × P is essential. The objectives of this research were to analyze the genetic diversity of T × T, T × P and D self oil palm progenies originated from Cameroon which would be used as parental population for breeding the commercial T types of oil palm in Indonesia, determine whether the progenies were from legitimate hybrids of the desired parents and evaluate their potential values for creating Tenera hybrid in the oil palm breeding programs. A total of 148 individuals from one combination of T × T and two T × P crosses and three D self-pollinations were evaluated. Genotyping was conducted using 16 SSR marker loci. The genotype data were analyzed using software for population genetic and genetic diversity analysis. Results of the analysis indicated the evaluated 16 SSR marker loci were either highly or moderately polymorphic based on their Polymorphic Information Content (PIC) values. Hence, they could be used for genetic diversity analysis of the evaluated oil palm progenies. Both the T × T and T × P progenies were more diverse than the D self-ones. Clustering and Principle Component Analysis (PCA) showed that all populations were grouped into three groups consisting of (1) B02 – T × P progenies, (2) B57 – T × T progenies, and (3) the rest of the populations (a mixture of the B01 – T × P progenies, and the three D self progenies). Moreover, the third group was further divided into five sub-groups, consisting of sub-group 3.1: the B01 progenies, and sub-group 3.2 to 3.5 comprising of a mix of individuals from members of at least two different D self progenies. All the studied T × T and T × P progenies could potentially be used as improved male parents for producing future Tenera oil palm hybrid varieties. The T x T and T × P progenies had a wider genetic distance than that of the D self progenies. Moreover, for practical breeding purposes, the members of D self oil palm progenies should not be grouped based only on the family but should be based on the results of the clustering analysis. The reported data should be beneficial for aiding future oil palm breeding in Indonesia.
Abstract. Tambunan VB, Apriyanto A, Ajambang W, Etta CE, Sahari B, Buchori D, Hidayat P. 2020. Molecular identification and population genetic study of Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae) from Indonesia, Malaysia and Cameroon based on mitochondrial gene. Biodiversitas 21: 3263-3270. Oil palm pollinating weevil Elaeidobius kamerunicus is a very important insect pollinator in oil palm plantation. However, there is still lack of information about molecular identification and population genetic study in this species. The purpose of this study was to explore the effectiveness of oil palm pollinating weevil identification using mitochondrial DNA of COI gene and to assess its genetic variation between different locations and countries. We sequenced the DNA barcode of 36 individuals of this species using the mtDNA Cytochrome Oxidase I (COI) gene to explore their genetic variation, identity and phylogenetic relationship. The COI gene sequences generated from this study were successful in identifying E. kamerunicus. Phylogenetic analysis also revealed 3 well-supported monophyletic haplogroups of E. kamerunicus population. In addition, genetic differentiation analysis revealed that most populations from Indonesia were different from Malaysian and Cameroonian populations indicating that there was a genetic variation between the population samples from these countries. The overall E. kamerunicus used in this study were geographically structured in two regions; outside Indonesia region (Cameroon and Malaysia) and Indonesia region. These results demonstrate the feasibility of using COI gene sequence for molecular identification and population genetic study of E. kamerunicus species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.