Abstract. Budiman LF, Apriyanto A, Pancoro A, Sudarsono S. 2019. Genetic diversity analysis of Tenera × Tenera and Tenera × Pisifera Crosses and D self of oil palm (Elaeis guineensis) parental populations originating from Cameroon. Biodiversitas 20: 937-949. There are three types of oil palm (Elaeis guineensis Jacq.) based on the shell thickness, such as the Dura (D type, with a thick shell), the Pisifera (P type, with no or very thin shell) and the Tenera (T type, with medium shell thickness), respectively. The T type is a commercially grown oil palm, originated from hybridization between D × P types. The success of oil palm breeding depends on the availability of diverse parental populations, especially in the D and the P types. Unfortunately, the improved P type of oil palm may only be produced by crossing between Tenera (T × T) or between Tenera and Pisifera (T × P) while improved D type may easily be produced from selfing of a single Dura type palm (D self). Therefore, evaluation of the potential genetic diversity of Dura parental lines derived from D self and Pisifera lines derived from T × T or T × P is essential. The objectives of this research were to analyze the genetic diversity of T × T, T × P and D self oil palm progenies originated from Cameroon which would be used as parental population for breeding the commercial T types of oil palm in Indonesia, determine whether the progenies were from legitimate hybrids of the desired parents and evaluate their potential values for creating Tenera hybrid in the oil palm breeding programs. A total of 148 individuals from one combination of T × T and two T × P crosses and three D self-pollinations were evaluated. Genotyping was conducted using 16 SSR marker loci. The genotype data were analyzed using software for population genetic and genetic diversity analysis. Results of the analysis indicated the evaluated 16 SSR marker loci were either highly or moderately polymorphic based on their Polymorphic Information Content (PIC) values. Hence, they could be used for genetic diversity analysis of the evaluated oil palm progenies. Both the T × T and T × P progenies were more diverse than the D self-ones. Clustering and Principle Component Analysis (PCA) showed that all populations were grouped into three groups consisting of (1) B02 – T × P progenies, (2) B57 – T × T progenies, and (3) the rest of the populations (a mixture of the B01 – T × P progenies, and the three D self progenies). Moreover, the third group was further divided into five sub-groups, consisting of sub-group 3.1: the B01 progenies, and sub-group 3.2 to 3.5 comprising of a mix of individuals from members of at least two different D self progenies. All the studied T × T and T × P progenies could potentially be used as improved male parents for producing future Tenera oil palm hybrid varieties. The T x T and T × P progenies had a wider genetic distance than that of the D self progenies. Moreover, for practical breeding purposes, the members of D self oil palm progenies should not be grouped based only on the family but should be based on the results of the clustering analysis. The reported data should be beneficial for aiding future oil palm breeding in Indonesia.
<p style="text-align: justify;">This research was held from April to July 2012, located in the seed processing unit of PT Astra Agro Lestari Tbk, Central Borneo. The study consisted of three experiments, the first experiment to determine the effect of water temperature and immersion intensity of seed germination. The first experiment used completely randomized design (CRD) factorial with two factors, water temperature: 27, 60, 70, 80, 90<sup>o</sup>C and immersion intensity: 1x24, 2x24, 3x24 hours. The second experiment used a single factor of CRD namely ethephon concentration: 0, 0.4, 0.8, 1.2, 1.6%. The third experiment was a continuation from the second experiment with the adding heat drying treatment during a week. The result showed that 3x24 hours soaking treatment in 80<sup>o</sup>C hot water increased the germination, soaking in ethephon 0.4% inhibited radicle growth resulted abnormal seedlings. Soaking seed in 80<sup>o</sup>C hot water for 3x24 hours and followed by ethephon and then heat drying treatment for a week increased germination (52.0% maximum growth potential) but still ineffective to break seed dormancy.</p><p>Key Words: breaking dormancy, ethephon, hot water treatment, oil palm seeds</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.