Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Here, we utilize 73 high-quality genomes that encompass the subpopulation structure of Asian rice (Oryza sativa), plus the genomes of two wild relatives (O. rufipogon and O. punctata), to build a pan-genome inversion index of 1769 non-redundant inversions that span an average of ~29% of the O. sativa cv. Nipponbare reference genome sequence. Using this index, we estimate an inversion rate of ~700 inversions per million years in Asian rice, which is 16 to 50 times higher than previously estimated for plants. Detailed analyses of these inversions show evidence of their effects on gene expression, recombination rate, and linkage disequilibrium. Our study uncovers the prevalence and scale of large inversions (≥100 bp) across the pan-genome of Asian rice and hints at their largely unexplored role in functional biology and crop performance.
Understanding and exploiting genetic diversity is a key factor for the productive and stable production of rice. Utilizing 16 high-quality genomes that represent the subpopulation structure of Asian rice (O. sativa), plus the genomes of two close relatives (O. rufipogon and O. punctata), we built a pan-genome inversion index of 1,054 non-redundant inversions that span an average of ~ 14% of the O. sativa cv. Nipponbare reference genome sequence. Using this index we estimated an inversion rate of 1,100 inversions per million years in Asian rice, which is 37 to 73 times higher than previously estimated for plants. Detailed analyses of these inversions showed evidence of their effects on gene regulation, recombination rate, linkage disequilibrium and agronomic trait performance. Our study uncovers the prevalence and scale of large inversions (≥ 100 bp) across the pan-genome of Asian rice, and hints at their largely unexplored role in functional biology and crop performance.
The wild relatives of rice hold unexplored genetic diversity that can be employed to feed an estimated population of 10 billion by 2050. The Oryza Map Alignment Project (OMAP) initiated in 2003 has provided comprehensive genomic resources for comparative, evolutionary and functional characterization of the wild relatives of rice, facilitating the cloning of over 600 rice genes, including those for grain width (GW5) and submergence tolerance (SUB1A). Following the footsteps of the original project, the goal of “IOMAP: The Americas” is to investigate the present and historic genetic diversity of wild Oryza species endemic to the Americas through the sequencing of herbaria and in-situ specimens. The generation of a large diversity panel describing past and current genetic status and potential erosion of genetic variation in the populations will provide useful knowledge for the conservation of the biodiversity in these species. The wild relatives of rice in the Americas present a wide range of resistance traits useful for crop improvement and neodomestication approaches. In the race against time for a sustainable food future, the neodomestication of the first cereal species recently accomplished in O. alta opens the door to the potential neodomestication of the other wild Oryza species in Americas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.