In this paper, the impact of thermally induced self-doping and phase transformation in TiO2 based resistive random-access memory (ReRAM) is discussed. Instead of a thin film, a vertically aligned one-dimensional TiO2 nanotube array (TNTA) was used as a switching element. Anodic oxidation method was employed to synthesize TNTA, which was thermally treated in the air at 350 °C followed by further annealing from 350 °C to 650 °C in argon. Au/TiO2 nanotube/Ti resistive switching devices were fabricated with porous gold (Au) top electrode. The x-ray diffraction results along with Raman spectra evidently demonstrate a change in phase of crystallinity from anatase to rutile, whereas photoluminescence spectra revealed the self-doping level in terms of oxygen vacancies (OV) and Ti interstitials (Tii) as the temperature of thermal treatment gets increased. The electrical characterizations establish the bipolar and electroforming free resistive switching in all the samples. Among those, the ReRAM sample S3 thermally treated at 550 °C displayed the most effective resistive switching properties with R
OFF/R
ON of 102 at a read voltage of −0.6 V and a SET voltage of −2.0 V. Moreover, the S3 sample showed excellent retention performance for over 106 s, where stable R
OFF/R
ON ≈ 107 was maintained throughout the experiment.
Ferroelectric materials offer a low-energy, high-speed alternative to conventional logic and memory circuitry. Hafnia-based films have achieved singledigit nm ferroelectricity, enabling further device miniaturization. However, they can exhibit nonideal behavior, specifically wake-up and fatigue effects, leading to unpredictable performance variation over consecutive electronic switching cycles, preventing large-scale commercialization. The origins are still under debate. Using plasmon-enhanced spectroscopy, a non-destructive technique sensitive to <1% oxygen vacancy variation, phase changes, and single switching cycle resolution, the first real-time in operando nanoscale direct tracking of oxygen vacancy migration in 5 nm hafnium zirconium oxide during a pre-wake-up stage is provided. It is shown that the pre-wake-up leads to a structural phase change from monoclinic to orthorhombic phase, which further determines the device wake-up. Further migration of oxygen ions in the phase changed material is then observed, producing device fatigue. These results provide a comprehensive explanation for the wake-up and fatigue with Raman, photoluminescence and darkfield spectroscopy, combined with density functional theory and finite-difference time-domain simulations.
In this article, a new method is developed to design a three-band miniaturized bandpass filter (BPF) that uses two asymmetrically coupled resonators with one step discontinuity and open-circuited uniform impedance resonator (UIR) to achieve Global Interoperability with Microwave Access (WiMAX) and Radio Frequency Identification (RFID) applications. First, a pair of asymmetrical step impedance resonators (ASIR) is used to implement a dual band filter, then a half wavelength uniform impedance resonator is added below to the transmission line to achieve a triple band response. The proposed filter resonates at frequencies of 3.7 GHz, 6.6 GHz, and 9 GHz with the fractional bandwidth of 7.52%, 5.1%, and 4.44%, respectively. By adjusting the physical length ratio (α) and the impedance ratio (R) of the asymmetric SIR, the proposed fundamental frequencies of the triple BPF are obtained. Moreover, the coupling coefficient (Ke) and external quality factor (Qe) are investigated between the resonators and the input/output ports of the transmission line and are calculated using full-wave EM simulator HFSS. In addition, five transmission zeros are introduced near the passbands to increase the filter selectivity. Finally, the proposed filter is designed and fabricated with a size of 13.69 × 25 mm (0.02 λg × 0.03 λg), where λg represents the guiding wavelength in the first passband. The simulated and measured results have a good correspondence, thus confirming the design concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.