The objective of the study was to produce three-dimensional and porous nanofiber reinforced hydrogel scaffolds that can mimic the hydrated composite structure of the cartilage extracellular matrix. In this regard, wet-electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofiber reinforced carboxymethyl chitosan-silk fibroin (PNFs/CMCht-SF) hydrogel composite scaffolds that were chemically cross-linked by poly(ethylene glycol) diglycidyl ether (PEGDE) were produced. To the best of our knowledge, this is the first study in cartilage regeneration where a three dimensional porous spongy composite scaffold was obtained by the dispersion of wet-electrospun nanofibers within a polymer matrix. All of the produced hydrogel composite scaffolds had an interconnected microporous structure with well-integrated PHBV nanofibers on the pore walls. The scaffold comprising an equal amount of PEGDE and polymer (PNFs/CMCht-SF1:PEGDE1) demonstrated comparable water content (91.4 ± 0.7%), tan δ (0.183 at 1 Hz) and compressive strength (457 ± 85 kPa) values to that of articular cartilage. Besides, based on the histological analysis, this hydrogel composite scaffold supported the chondrogenic differentiation of bone marrow mesenchymal stem cells. Consequently, this hydrogel composite scaffold presented a great promise for cartilage tissue regeneration.
Objective The aim of this study was to evaluate the meniscal regeneration and arthritic changes after partial meniscectomy and application of either polyurethane scaffold or novel multilayer meniscal scaffold in a rabbit model. Methods Sixteen NewZealand rabbits were randomly divided into three groups. A reproducible 1.5-mm cylindrical defect was created in the avascular zone of the anterior horn of the medial meniscus bilaterally. Defects were filled with the polyurethane scaffold in Group 1 (n:6) and with novel multilayer scaffold in Group 2 (n:6). Rabbits in Group 3 (n:4) did not receive any treatment and defects were left empty. All animals were sacrificed after 8 weeks and bilateral knee joints were taken for macroscopic, biomechanical, and histological analysis. After excision of menisci, inked condylar surfaces and tibial plateaus were evaluated for arthritic changes. Digital photographs of excised menisci were also obtained and surface areas were measured by a computer software. Indentation testing of the tibial condyles and compression tests for the relevant meniscal areas was also performed in all groups. Histological analysis was made and all specimens were scored according to Rodeo scoring system. Results No signs of inflammation or infection were observed in any animals. A significant difference was observed between meniscus surface areas of the multilayer scaffold group (20.13 ± 1.91 mm 2 ) and the group with empty meniscus defects (15.62 ± 2.04 mm 2 ) (p = 0.047). The results of biomechanical compression tests revealed a significant difference between the Hayes scores of the second group (1.728) and the empty defect group (0,467) (p = 0.029). Intact meniscal tissue showed higher mechanical properties than all the defected samples. Multilayer scaffold group demonstrated the closest results compared to healthy meniscus tissue. Tibia indentation tests and histological evaluation showed no significant differences between groups (p = 0.401 and p = 0.186 respectively). Conclusions In this study, the initial evaluation of novel multilayer meniscal scaffold prevented the shrinkage that may occur in the meniscus area and demonstrated superior biomechanical results compared to empty defects. No adverse events related to scaffold material was observed. Besides, promising biomechanical and histological results, comparable to polyurethane scaffold, were obtained.
The aim of this study was to produce three-dimensional, nanofibrous fish scale/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite scaffolds as bone filling materials. This is the first report wherein fish scales were used within a nanofibrous matrix for bone regeneration. Composite scaffolds with a cotton wool-like structure (fiber diameter: 560 ± 64 nm; porosity: 82%) were obtained by incorporating chopped fish scales into wet-electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers and freeze-drying. The addition of the fish scales improved the mechanical properties, biomineralization tendency, cell viability, alkaline phosphatase activity, and type I collagen production. Consequently, produced composite scaffolds would be regarded to have the therapeutic capacity in bone tissue damages.
The main goal of the study was to produce chitosan-collagen hydrogel composite scaffolds consisting of 3D printed poly(lactic acid) (PLA) strut and nanofibrous cellulose for meniscus cartilage tissue engineering. For this purpose, first PLA strut containing microchannels was incorporated into cellulose nanofibers and then they were embedded into chitosan-collagen matrix to obtain micro- and nano-sized topographical features for better cellular activities as well as mechanical properties. All the hydrogel composite scaffolds produced by using three different concentrations of genipin (0.1, 0.3, and 0.5%) had an interconnected microporous structure with a swelling ratio of about 400% and water content values between 77 and 83% which is similar to native cartilage extracellular matrix. The compressive strength of all the hydrogel composite scaffolds was found to be similar (∼32 kPa) and suitable for cartilage tissue engineering applications. Besides, the hydrogel composite scaffold comprising 0.3% (w/v) genipin had the highest tan δ value (0.044) at a frequency of 1 Hz which is around the walking frequency of a person. According to the in vitro analysis, this hydrogel composite scaffold did not show any cytotoxic effect on the rabbit mesenchymal stem cells and enabled cells to attach, proliferate and also migrate through the inner area of the scaffold. In conclusion, the produced hydrogel composite scaffold holds great promise for meniscus tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.