Grain yield and yield components are the main important traits involved in durum wheat (Triticum turgidum L.) improvement programs. The purpose of this research was to identify quantitative trait loci (QTL) associated with yield components such as 1000 grain weight (TGW), grain weight per spike (GWS), number of grains per spike (GNS), spike number per m 2 (SN), spike weight (SW), spike harvest index (SHI) and harvest index (HI) using microsatellite markers. Populations of F 3 and F 4 lines derived from 151 F 2 individuals developed from a cross between Oste-Gata, a drought tolerant, and Massara-1, a drought susceptible durum wheat genotypes, were used. The populations were evaluated under four environmental conditions including two irrigation regimes of drought stress at terminal growth stages and normal field conditions in two growing seasons. Two hundred microsatellite markers reported for A and B genomes of bread wheat were used for parental polymorphism analysis and 30 polymorphic markers were applied to genotype 151 F 2:3 families. QTL analysis was performed using genome-wide single marker regression analysis (SMA) and composite interval mapping (CIM). The results of SMA revealed that about 20% of the phenotypic variation of harvest index and TGW could be explained by Xcfd22-7B and Xcfa2114-6A markers in different environmental conditions. Similarly, Xgwm181-3B, Xwmc405-7B and Xgwm148-3B and marker Xwmc166-7B were found to be associated with SHI and GWS, respectively. A total of 20 minor and major QTL were detected; five for TGW, two for GWS, two for GNS, three for SN, five for HI, two for SHI and one for SW. The mapped QTL associated with ten markers. Moreover, some of these QTL were prominent and stable under drought stress and non drought stress environments and explained up to 49.5% of the phenotypic variation.
DNA cassette consisting of an Arabidopsis dehydration-responsive element binding factor 1 (DREB1B) cDNA, driven by a cauliflower mosaic virus 35S promoter, was introduced into potato plants (Solanum tuberosum L.) through Agrobacterium tumefaciens-mediated gene transfer. The presence and expression of the gene in transgenic plants were confirmed by the PCR and RT-PCR techniques, respectively. Northern hybridization using a DREB1B cDNA probe revealed high levels of DREB1B expression among the most transgenic lines. Overexpression of DREB1B imparted a significant freezing and drought tolerance gain in the transgenic potato lines. In comparison with the wild-type plants, the transgenic potatoes contained higher proline content under drought and freezing conditions, and maintained their relative water content higher under water stress. The enhancement of tolerance in transgenic potato highlights the presence of genes responding to the transcription factor DREB1B in this plant.
DNA cassette consisting of an Arabidopsis dehydration-responsive element binding factor 1 (DREB1B) cDNA, driven by a cauliflower mosaic virus 35S promoter, was introduced into potato plants (Solanum tuberosum L.) through Agrobacterium tumefaciens-mediated gene transfer. The presence and expression of the gene in transgenic plants were confirmed by the PCR and RT-PCR techniques, respectively. Northern hybridization using a DREB1B cDNA probe revealed high levels of DREB1B expression among the most transgenic lines. Overexpression of DREB1B imparted a significant freezing and drought tolerance gain in the transgenic potato lines. In comparison with the wild-type plants, the transgenic potatoes contained higher proline content under drought and freezing conditions, and maintained their relative water content higher under water stress. The enhancement of tolerance in transgenic potato highlights the presence of genes responding to the transcription factor DREB1B in this plant.
The diploid goatgrass Aegilops tauschii is considered the D-genome donor of bread wheat and has probably a centre of diversity in north of Iran. In order to measure the genetic diversity of and the relationships among different populations, varieties and subspecies belonging to Ae. tauschii in Iran, DNA was extracted from 48 accessions of Ae. tauschii collected across the geographic range of the species in the Country and the genetic diversity was assessed using AFLPs based on eight PstI/MseI +3 primer pairs resulted in 277 bands, 198 of which were polymorphic. High level polymorphism was detected, with an average of polymorphism rate of 0.715; relatively low genetic similarity (0.455) between accessions and significant difference between the lowest (0.179) and the highest genetic similarity (0.817). The Iranian Ae. tauschii populations showed high level of genetic diversity. The populations studied were divided into two groups: one group was mainly representing Northern populations collected from Southern Caspian Sea shore and the other group was mainly representing Northeast and Northwest populations. Based on the results of this study, it can be suggested that Ae. tauschii possesses two separate gene-pools in Iran: Northern and Northeastern-Northwestern. Considering the needs for introducing new characteristics and alleles for wheat improvement purposes, Ae. tauschii Iranian gene-pool is assumed to be of high importance for more investigation in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.