Expression patterns of four candidate AREB/ABF genes and four DREB/CBF genes were evaluated in leaf and root tissues of five grape varieties (‘Qalati’, ‘Kaj Angoor’, ‘Sabz Angoor’, ‘Siahe Zarghan’, ‘Bidane Safid’) with differential response to drought stress. Among the AREB/ABF genes, AREB1 and ABF2 showed up-regulation in response to drought stress in leaf and root tissues of all varieties while AREB2 and ABF1 showed down-regulation in both leaf and root tissues of the sensitive variety ‘Bidane Sefid’ in response to drought and salt stress. Among the DREB/CBF genes, CBF4 was the most responsive to drought stress in both leaf and root tissues. CBF2 and CBF3 showed up-regulation in all varieties in response to drought stress in leaf except in ‘Bidane Sefid’. Under salinity stress, AREB2 and ABF2 showed up-regulation in response to the increasing level of salinity in the leaf tissues but in the root tissues ABF2 was up-regulated in response to increasing NaCl concentration while AREB2 was down-regulated. Therefore, it seems AREB2 has tissue-specific response to salinity stress. All CBF genes were up-regulated in response to salinity stress in the leaf and root tissues. Expression data suggested that CBF2 is more responsive to NaCl stress. Among all four promising and stress tolerant varieties ‘Siah Zarghan’ and ‘Kaj Angoor’ were more tolerant than ‘Qalati’ and ‘Sabz Angoor’ to drought and salinity.
DNA cassette consisting of an Arabidopsis dehydration-responsive element binding factor 1 (DREB1B) cDNA, driven by a cauliflower mosaic virus 35S promoter, was introduced into potato plants (Solanum tuberosum L.) through Agrobacterium tumefaciens-mediated gene transfer. The presence and expression of the gene in transgenic plants were confirmed by the PCR and RT-PCR techniques, respectively. Northern hybridization using a DREB1B cDNA probe revealed high levels of DREB1B expression among the most transgenic lines. Overexpression of DREB1B imparted a significant freezing and drought tolerance gain in the transgenic potato lines. In comparison with the wild-type plants, the transgenic potatoes contained higher proline content under drought and freezing conditions, and maintained their relative water content higher under water stress. The enhancement of tolerance in transgenic potato highlights the presence of genes responding to the transcription factor DREB1B in this plant.
Azadirachta indica, or Neem Tree, is an evergreen tree native to Southeast Asia. All parts of the tree have been used medicinally for centuries. The allelopathic potential of extracts of Azadirachta indica L., which is one of the most dominant weeds in tropical regions of South-west Asia, was investigated under laboratory conditions. The n-hexanesoluble, acetone-soluble and water-soluble fractions obtained from the acetone extract of A. indica shoots inhibited the germination and the growth of roots and shoots of six test plant species. The inhibitory activity of the water-soluble fraction was greatest, followed by that of the n-hexane-soluble and acetone-soluble fractions in all bioassays. Significant reductions in the germination and growth of the roots and hypocotyls were observed as the extract concentration increased. The concentration-dependent responses of the test plants to the fractions suggested that all three fractions might contain allelochemicals, but that the greatest potential was in the water-soluble fraction. These Vol. 1, No. 1
International Journal of Biology
72results indicate that A. indica may produce potent allelochemicals, which should be investigated further in the laboratory and the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.