Zerumbone isolated from the rhizomes of Zingiber zerumbet was investigated for the mechanisms by which it exhibits antiproliferative activity in colorectal cancer cells (SW480). The results indicated that the zerumbone suppressed cell growth and enhanced cell apoptosis. Exposure to zerumbone induced generation of reactive oxygen species, reduced the cellular antioxidant status, decreased mitochondrial membrane potential, and activated caspase 3, caspase 8, and caspase 9 (p < 0.001). It was also found that there was a decrease in the expression of Bcl 2 and elevation of Bax (p < 0.001) on exposure to zerumbone. Furthermore, treatment with 50, 75, and 100 μM zerumbone resulted in cell cycle arrest at the G2/M phase with a value of 17.2 ± 0.1, 19.63 ± 0.25, and 26.66 ± 0.25, respectively, and also distorted the microfilament network and effectively inhibited cellular migration.
Eight known phytochemicals, four sesquiterpenes and four flavonoids of Zingiber zerumbet were screened against α-glucosidase enzyme, aldose reductase enzyme and antiglycation property under in vitro conditions. The results established kaempferol-3-O-methylether as a potent inhibitor of α-glucosidase enzyme with an IC50 value of 7.88 μM. In aldose reductase enzyme inhibition assay, all the compounds except zerumbone epoxide showed good to excellent inhibition properties. Among these, the flavonoid compounds were found to be potent aldose reductase inhibitors compared with the four sesquiterpenes. In addition, compounds such as α-humulene, kaempferol, kaempferol-3-O-methylether and 3″,4″-O-diacetylafzelin displayed potent antiglycation properties. From overall results, we found that kaempferol and kaempferol-3-O-methylether are potent inhibitors of α-glucosidase enzyme, aldose reductase enzyme and glycation reaction, the three main targets of drugs for the treatment of diabetes and its complications.
The remarkable α-glucosidase inhibition exhibited by the acetone extract of the rhizome of Ampelocissus indica (L.) and stem bark of Vateria indica Linn. (IC50 23.2 and 1.47 μg mL−1) encouraged us to isolate the phytochemicals from these plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.