In this letter, development of a low-loss radio frequency (RF) microelectromechanical (MEMS) 4-bit X-band monolithic phase shifter is presented. These microstrip circuits are fabricated on 0.021-in-thick high-resistivity silicon and are based on a reflection topology using 3-dB Lange couplers. The average insertion loss of the circuit is 1.4 dB with the return loss >11 dB at 8 GHz. To the best of our knowledge, this is a lowest reported loss for X-band phase shifter and promises to greatly reduce the cost of designing and building phase arrays.
As the need for low-loss phase shifters increases, so does the interest in radio frequency (RF) MEMS as a solution to provide them. In this paper, progress in building low loss Ka-band phase shifters using RF MEMS capacitive switches is demonstrated. Using a switched transmission line 4-bit resonant phase shifter, an average insertion loss of 2.25 dB was obtained with better than 15-dB return loss. A similar 3-bit phase shifter produced an average insertion loss of 1.7 dB with better than 13-dB return loss. Both devices had a phase error of less than 13 in the fundamental states. To our knowledge, these devices represent the lowest loss Ka-band phase shifters reported to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.