BackgroundFever and pain management is a very challenging job for the clinician as the available synthetic agents are causing serious side effects. The present research article deals with the antipyretic and antinociceptive activity of extract/fractions of Potentilla evestita and acacetin isolated from the chloroform fraction of the plant.MethodsVarious chromatographic and spectroscopic techniques were used for the isolation and characterizion of compound. In-vivo yeast induced fibrile mice were used for antipyretic activity while acetic acid induced writhing and formalin tests were used for antinociceptive.ResultsThe extract/fractions of P. evestita caused marked antipyretic effect during various assessment times in which chloroform was the most prominent followed by ethyl acetate. When acacetin was injected, it produced marked effect with maximum activity of 33.28% and 55.01% at 5 and 10 mg/kg i.p respectively. When studied in acetic acid induced writhing test, the extract/fractions evoked significant antinociceptive effect in which chloroform was the most effective fraction followed by ethyl acetate. Acacetin showed significant antinociceptive effect with 44.77% and 67.03% reduction in abdominal constriction at 5 and 10 mg/kg i.p., respectively. Similarly, it evoked significant dose dependent reduction in noxious stimulation with 42.07% and 64.57% pain attenuation at 5 and 10 mg/kg i.p., respectively in initial phase. In the late phase, it illustrated more dominant effect with 46.32% and 67.29% reduction of painful sensation.ConclusionsIn conclusion, the extract/fractions of P. evestita as well as the isolated compound, acacetin showed strong antipyretic and antinociceptive activity in various animal models possibly mediated through both peripheral and central mechanism.
Background: Nature has the potential to reduce metal salts to their relative nanoparticles. Traditionally physical and chemical methods were used for the synthesis of nanoparticles but due to use of toxic chemicals, non-ecofriendly methods and other harmful effects, green chemistry approaches are now employed for synthesizing nanoparticles which are basically the most cost effective, ecofriendly and non-hazardous methods. Objective: In this review we aimed to valuate and study the details of various mechanisms used for green synthesis of silver nanoparticles from plants, their size, shape and potential applications. Results: Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical application since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Results: Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical application since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Conclusion: Silver nanoparticles have been studied as an important research area due to their specific and tunable properties and their application in the field of biomedicine such as tissue and tumor imaging and drug delivery. These nanoparticles can be further investigated to find out their antimicrobial potential in cell lines and animal models.
α-glucosidase is responsible for the hydrolysis of complex carbohydrates into simple absorbable glucose and causes postprandial hyperglycemia. α-glucosidase inhibition is thus the ideal target to prevent postprandial hyperglycemia. The present study was therefore designed to analyze the effects of various compounds isolated from Dryopteris cycadina against α-glucosidase including β-Sitosterol 1, β-Sitosterol3-O-β-d-glucopyranoside 2, 3, 5, 7-trihydroxy-2-(p-tolyl) chorman-4-one 3, Quercetin-3-0-β-d-glucopyranoside (3/→0-3///)- β-d- Quercetin -3-0- β –d-galactopyranoside 4 and 5, 7, 4/-Trihydroxyflavon-3-glucopyranoid 5. The in vitro spectrophotometric method was used for the analysis of test compounds against possible inhibition. Similarly, molecular docking studies were performed using the MOE software. These compounds showed concentration-dependent inhibition on α-glucosidase, and compounds 1 (IC50: 143 ± 0.47 µM), 3 (IC50:133 ± 6.90 µM) and 5 (IC50: 146 ± 1.93 µM) were more potent than the standard drug, acarbose (IC50: 290 ± 0.54 µM). Computational studies of these compounds strongly supported the in vitro studies and showed strong binding receptor sensitivity. In short, the secondary metabolites isolated from D. cycadina demonstrated potent α-glucosidase inhibition that were supported by molecular docking with a high docking score.
Background: Dryopteris cycadina has diverse traditional uses in the treatment of various human disorders which are supported by pharmacological studies. Similarly, the phytochemical studies of this plant led to the isolation of numerous compounds. Methodology: The present study deals with α-glucosidase inhibition of various kaempferol derivates including kaempferol-3, 4/-di-O-α- L-rhamnopyranoside 1, kaempferol-3, 5-di-O-α-L-rhamnoside 2 and kaempferol-3,7-di-O-α- L-rhamnopyranoside 3. Results: The results showed marked concentration-dependent inhibition of the enzyme when assayed at different concentrations and the IC50 values of compounds 1-3 were 137±9.01, 110±7.33, and 136±1.10 mM, respectively far better than standard compound, acarbose 290±0.54 mM. The computational studies revealed strong docking scores of these compounds and augmented the in vitro assay. Conclusion: In conclusion, the isolated kaempferol derivatives 1-3 from D. cycadina exhibited potent α- glucosidase inhibition.
The Silica monolith particles (SMP) were prepared from Tetra-Methyl-Ortho-Silicate (TMOS) and characterized by Fourier transforms infrared (FTIR), Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and surface area analyzer. FTIR analysis showed the Si-O stretching confirming SMP formation. SEM analysis provided information about the mean diameter of SMP (1-5 µm). EDX confirmed the presence of silicon and oxygen in the SMP. Moreover, the calculated surface area for SMP was found to be around 367 m2/g, whereas BJH pore size distributed particles were 87.15 along with the total pore volume and pore radius of 0.073 cm3/g and 16.627 Å, respectively. Besides, the removal efficiency was found to be about 96%. Various kinetic equations were used to calculate the adsorption parameters. Overall, the results show that the most appropriate model for the kinetics data was the pseudo-second order kinetics model while the mechanism of adsorption was best explained by the Langmuir isotherm. The highest removal of Basic Red 5 dye after 120 min at 298 K was 576 mg/g. Moreover, the thermodynamics parameters (Enthalpy, Gibb’s energy, and Entropy) were also estimated. The ΔH° (0.995 kJ/mol) value depicted the endothermic nature of the process. The non-spontaneous aspect of the process was evident from the ΔG° values which were 60.431, 328.93, and 339.5 kJ/mol at 293, 303, and 313 K, respectively. From the high removal efficiency value, it can be concluded that the prepared adsorbent can be a potential adsorbent in the reclamation of dyes from wastewater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.