Rad51p is a eukaryotic homolog of RecA, the central homologous pairing and strand exchange protein in Escherichia coli. Rad54p belongs to the Swi2p/Snf2p family of DNA‐stimulated ATPases. Both proteins are also important members of the RAD52 group which controls recombinational DNA damage repair of double‐strand breaks and other DNA lesions in Saccharomyces cerevisiae. Here we demonstrate by genetic, molecular and biochemical criteria that Rad51 and Rad54 proteins interact. Strikingly, overexpression of Rad54p can functionally suppress the UV and methyl methanesulfonate sensitivity caused by a deletion of the RAD51 gene. However, no suppression was observed for the defects of rad51 cells in the repair of γ‐ray‐induced DNA damage, mating type switching or spontaneous hetero‐allelic recombination. This suppression is genetically dependent on the presence of two other members of the recombinational repair group, RAD55 and RAD57. Our data provide compelling evidence that Rad51 and Rad54 proteins interact in vivo and that this interaction is functionally important for recombinational DNA damage repair. As both proteins are conserved throughout evolution from yeasts to humans, a similar protein–protein interaction may be expected in other organisms.
The tissue-specific expression of mHR54 is consistent with a role for the gene in recombination. The complementation experiments show that the DNA repair function of Rad54 is conserved from yeast to humans. Our findings underscore the fundamental importance of DNA repair pathways: even though they are complex and involve multiple proteins, they seem to be functionally conserved throughout the eukaryotic kingdom.
The Schizosaccharomyces pombe rhp51+, rad22+ and rhp54+ genes are homologous to RAD51, RAD52 and RAD54 respectively, which are indispensable in the recombinational repair of double-strand breaks (DSBs) in Saccharomyces cerevisiae. The rhp51Delta and rhp54Delta strains are extremely sensitive to ionizing radiation; the rad22Delta mutant turned out to be much less sensitive. Homologous recombination in these mutants was studied by targeted integration at the leu1-32 locus. These experiments revealed that rhp51Delta and rhp54Delta are equally impaired in the integration of plasmid molecules (15-fold reduction), while integration in the rad22Delta mutant is only reduced by a factor of two. Blot-analysis demonstrated that the majority of the leu+ transformants of the wild-type and rad22Delta strains have integrated one or more copies of the vector. Gene conversion events were observed in less than 10% of the transformants. Interestingly, the relative contribution of gene conversion events is much higher in a rhp51Delta and a rhp54Delta background. Meiotic recombination is hardly affected in the rad22Delta mutant. The rhp51Delta and rhp54Delta strains also show minor deficiencies in this type of recombination. The viability of spores is 46% in the rad22Delta strain and 27% in the rhp54Delta strain, as compared with wild-type cells. However, in the rhp51Delta mutant the spore viability is only 1.7%, suggesting an essential role for Rhp51 in meiosis. The function of Rhp51 and Rhp54 in damage repair and recombination resembles the role of Rad51 and Rad54 in S. cerevisiae. Compared with Rad52 from S. cerevisiae, Rad22 has a much less prominent role in the recombinational repair pathway in S. pombe.
RAD54 is an important gene in the RAD52 group that controls recombinational repair of DNA damage in Saccharomyces cerevisiae. Rad54p is a DNA‐dependent ATPase and shares seven conserved sequence motifs with proteins of the Swi2p/Snf2p family. Genetic analysis of mutations in motif IA, the putative ATP‐binding fold of Rad54p, demonstrated the functional importance of this motif. Overexpression of these mutant proteins resulted in strong, dominant‐negative effects on cell survival. High levels of full‐length wild‐type Rad54p or specific parts of Rad54p also resulted in negative effects, dependent on the ploidy of the host cell. This differential effect was not under a/α mating‐type control. Deletion of the RAD54 gene led to a small but significant increase in the mutation rate. However, the negative overexpression effects in haploid cells could not be explained by an accumulation of (recessive) lethal mutations. All negative overexpression effects were found to be enhanced under genotoxic stress. We suggest that the negative overexpression effects are the result of unbalanced protein–protein interactions, indicating that Rad54p is involved in multiple interactions, dependent on the physiological situation. Diploid wild‐type cells contained an estimated 7000 Rad54p molecules/cell, whereas haploid cells about 3500/cell. Rad54p levels were highest in actively growing cells compared to stationary phase cells. Rad54 protein levels were found to be elevated after DNA damage. Copyright © 1999 John Wiley & Sons, Ltd.
The hrs1-1 mutation was isolated as an extragenic suppressor of the hyperrecombination phenotype of hpr1Δ cells. We have cloned, sequenced and deleted from the genome the HRS1 gene. The DNA sequence of the HRS1 gene reveals that it is identical to PGD1, a gene with no reported function, and that the Hrs1p protein contains polyglutamine stretches typically found in transcription factors. We have purified a His(6) tagged version of Hrs1p protein from E. coli and have obtained specific anti-Hrs1p polyclonal antibodies. We show that Hrs1p is a 49-kD nuclear protein, as determined by indirect immunofluorescence microscopy and Western blot analysis. The hrs1Δ null mutation reduces the frequency of deletions in wild-type and hpr1Δ backgrounds sevenfold below wild-type and rad52 levels. Furthermore, hrs1Δ cells show reduced induction of the GAL1,10 promoter relative to wild-type cells. Our results suggest that Hrs1p is required for the formation of deletions between direct repeats and that it may function in gene expression. This suggests a connection between gene expression and direct repeat recombination. In this context, we discuss the possible roles of Hrs1p and Hpr1p in initiation of direct-repeat recombination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.