The antihypertensive losartan (LOS) has been detected in wastewater and environmental matrices, however further studies focused on assessing the ecotoxicological effects on aquatic ecosystems are necessary. Considering the intensive use of this pharmaceutical and its discharges into coastal zones, our study aimed to determine the environmental concentrations of LOS in seawater, as well as to assess the biological effects of LOS on the marine bivalve Perna perna. For this purpose, fertilization rate and embryolarval development were evaluated through standardized assays. Phase I (ethoxyresorufin O‑deethylase EROD and dibenzylfluorescein dealkylase DBF) and II (glutathione S-transferase GST) enzymes, glutathione peroxidase (GPx), Cholinesterase (ChE), lipoperoxidation (LPO) and DNA damage were used to analyze sublethal responses in gills and digestive gland of adult individuals. Lysosomal membrane stability was also assessed in hemocytes. Our results showed the occurrence of LOS in 100% of the analyzed water samples located in Santos Bay, Sao Paulo, Brazil, in a range of 0.2 ng/L-8.7 ng/L. Effects on reproductive endpoints were observed after short-term exposure to concentrations up to 75 mg/L. Biomarker responses demonstrated the induction of CYP450 like activity and GST in mussel gills exposed to 300 and 3000 ng/L of LOS, respectively. GPx activity was also increased in concentration of exposure to 3000 ng/L of LOS. Cyto-genotoxic effects were found in gills and hemocytes exposed in concentrations up to 300 ng/L. These results highlighted the concern of introducing this class of contaminants into marine environments, and pointed out the need to include antihypertensive compounds in environmental monitoring programs.
The presence of cocaine and its metabolites and by-products has been identified in different aquatic matrices, making crack cocaine the target of recent studies. The aim of this study was to evaluate the sublethal effects of crack on the brown mussel Perna perna. Mussels were exposed to three concentrations of crack cocaine (0.5, 5.0, and 50.0 μg L) for 168 h. Gills, digestive glands, and hemolymph were extracted and analyzed after three different exposure times using a suite of biomarkers (EROD, DBF, GST, GPX, LPO, DNA damage, ChE, and lysosomal membrane stability [LMS]). After 48 and 96 h of exposure, EROD, DBF, GST, GPX activities and DNA strand breaks in the gills increased significantly after 48 and 96 h of exposure. Alterations in LMS were also observed in the mussels exposed to all crack concentrations after 96 and 168 h. Our results demonstrated that crack cocaine is metabolized by CYP-like and GST activities in the gills. GPX was not able to prevent primary genetic damage, and cytotoxic effects in the hemocytes were also observed in a dose- and time-dependent response. Our study shows that the introduction of illicit drugs into coastal ecosystems must be considered a threat to marine organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.