Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Incidence of hepatocellular carcinoma (HCC) is on the rise due to the prevalence of chronic hepatitis and cirrhosis. Although there are surgical and chemotherapy treatment avenues the mortality rate of HCC remains high. Immunotherapy is currently the new frontier of cancer treatment and the immunobiology of HCC is emerging as an area for further exploration. The tumor microenvironment coexists and interacts with various immune cells to sustain the growth of HCC. Thus, immunosuppressive cells play an important role in the anti-tumor immune response. This review will discuss the current concepts of immunosuppressive cells, including tumor-associated macrophages, marrow-derived suppressor cells, tumor-associated neutrophils, cancer-associated fibroblasts, and regulatory T cell interactions to actively promote tumorigenesis. It further elaborates on current treatment modalities and future areas of exploration.
Background
Circular RNAs (circRNAs) are a class of non-coding RNAs with a loop structure, but its functions remain largely unknown. Growing evidence has revealed that circRNAs play a striking role as functional RNAs in the progression of malignant disease. However, the precise role of circRNAs in gastric cancer (GC) remains unclear.
Methods
CircRNAs were determined by human circRNA array analysis and quantitative reverse transcription polymerase reaction. Luciferase reporter, RNA pull down, and fluorescence in situ hybridization assays were employed to test the interaction between circPSMC3 and miR-296-5p. Ectopic over-expression and siRNA-mediated knockdown of circPSMC3, proliferation, migration and invasion in vitro, and in vivo experiment of metastasis were used to evaluate the function of circPSMC3.
Results
CircPSMC3 rather than liner PSMC3 mRNA was down-regulated in GC tissues, corresponding plasmas from GC patients as well as GC cell lines compared to normal controls. Lower circPSMC3 expression in GC patients was correlated with higher TNM stage and shorter overall survival. Over-expression of circPSMC3 and miR-296-5p inhibitor could inhibit the tumorigenesis of gastric cancer cells in vivo and vitro whereas co-transfection of circPSMC3 and miRNA-296-5p could counteract this effect. Importantly, we demonstrated that circPSMC3 could act as a sponge of miR-296-5p to regulate the expression of Phosphatase and Tensin Homolog (PTEN), and further suppress the tumorigenesis of gastric cancer cells.
Conclusion
Our study reveals that circPSMC3 can serve as a novel potential circulating biomarker for detection of GC. CircPSMC3 participates in progression of gastric cancer by sponging miRNA-296-5p with PTEN, providing a new insight into the treatment of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.