Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Circular RNAs (circRNAs), a novel class of long noncoding RNAs, are characterized by a covalently closed continuous loop without 5′ or 3′ polarities structure and have been widely found in thousands of lives including plants, animals and human beings. Utilizing the high-throughput RNA sequencing (RNA-seq) technology, recent findings have indicated thata great deal of circRNAs, which are endogenous, stable, widely expressed in mammalian cells, often exhibit cell type-specific, tissue-specific or developmental-stage-specific expression. Evidences are arising that some circRNAs might regulate microRNA (miRNA) function as microRNA sponges and play a significant role in transcriptional control. circRNAs associate with related miRNAs and the circRNA-miRNA axes are involved in a serious of disease pathways such as apoptosis, vascularization, invasion and metastasis. In this review, we generalize and analyse the aspects including synthesis, characteristics, classification, and several regulatory functions of circRNAs and highlight the association between circRNAs dysregulation by circRNA-miRNA-mRNA axis and sorts of diseases including cancer- related and non-cancer diseases.”
Incidence of hepatocellular carcinoma (HCC) is on the rise due to the prevalence of chronic hepatitis and cirrhosis. Although there are surgical and chemotherapy treatment avenues the mortality rate of HCC remains high. Immunotherapy is currently the new frontier of cancer treatment and the immunobiology of HCC is emerging as an area for further exploration. The tumor microenvironment coexists and interacts with various immune cells to sustain the growth of HCC. Thus, immunosuppressive cells play an important role in the anti-tumor immune response. This review will discuss the current concepts of immunosuppressive cells, including tumor-associated macrophages, marrow-derived suppressor cells, tumor-associated neutrophils, cancer-associated fibroblasts, and regulatory T cell interactions to actively promote tumorigenesis. It further elaborates on current treatment modalities and future areas of exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.