Sorafenib is a multikinase inhibitor capable of facilitating apoptosis, mitigating angiogenesis and suppressing tumor cell proliferation. In late-stage hepatocellular carcinoma (HCC), sorafenib is currently an effective first-line therapy. Unfortunately, the development of drug resistance to sorafenib is becoming increasingly common. This study aims to identify factors contributing to resistance and ways to mitigate resistance. Recent studies have shown that epigenetics, transport processes, regulated cell death, and the tumor microenvironment are involved in the development of sorafenib resistance in HCC and subsequent HCC progression. This study summarizes discoveries achieved recently in terms of the principles of sorafenib resistance and outlines approaches suitable for improving therapeutic outcomes for HCC patients.
Circular RNAs (circRNAs), a novel class of long noncoding RNAs, are characterized by a covalently closed continuous loop without 5′ or 3′ polarities structure and have been widely found in thousands of lives including plants, animals and human beings. Utilizing the high-throughput RNA sequencing (RNA-seq) technology, recent findings have indicated thata great deal of circRNAs, which are endogenous, stable, widely expressed in mammalian cells, often exhibit cell type-specific, tissue-specific or developmental-stage-specific expression. Evidences are arising that some circRNAs might regulate microRNA (miRNA) function as microRNA sponges and play a significant role in transcriptional control. circRNAs associate with related miRNAs and the circRNA-miRNA axes are involved in a serious of disease pathways such as apoptosis, vascularization, invasion and metastasis. In this review, we generalize and analyse the aspects including synthesis, characteristics, classification, and several regulatory functions of circRNAs and highlight the association between circRNAs dysregulation by circRNA-miRNA-mRNA axis and sorts of diseases including cancer- related and non-cancer diseases.”
CircRNA expression profiles for gastric cancer (GC) were screened using plasma samples from 10 GC patients with different TNM stages and 5 healthy individuals as controls. Results showed lower expression of circ-KIAA1244 in GC tissues, plasmas, and cells compare to normal controls. Further clinical data analysis demonstrated that a decreased expression of circ-KIAA1244 in plasmas was negatively correlated with TNM stage and lymphatic metastasis, and a shorter overall survival time of GC patients. Moreover, we found that circ-KIAA1244 could be detected in GC plasma exosomes and showed no obvious significance compared to the expression level in the corresponding plasmas. This study revealed a GC-tissues-derived circ-KIAA1244 could serve a novel circulating biomarker for detection of GC.Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0888-8) contains supplementary material, which is available to authorized users.
H epatocellular carcinoma (HCC) is the sixth leading type of cancer and the second most fatal tumor worldwide (1). For patients with early stage HCC as defined by the Milan criteria (solitary nodule 5 cm or as many as three nodules 3 cm, without macrovascular invasion and extrahepatic spread), both liver resection and liver transplant are the mainstay curative options (1,2). Although liver transplant offers definite advantages of extirpating both the tumor and the diseased liver, demand for organs far exceeds supply. Therefore, liver resection is accepted as the first-line treatment option for patients with early stage HCC and preserved liver function, whereas liver transplant is the recommended treatment for patients with decompensated cirrhosis (3). Unfortunately, HCC recurrence, including true recurrence by means of tumor dissemination and development of de novo tumors in the cirrhotic liver, occurs in 50%-60% of these patients at 5 years (4,5).Currently, HCC staging systems (eg, Barcelona Clinic Liver Cancer, Hong Kong Liver Cancer, Cancer of the Liver Italian Program, and TNM systems) occupy the central role in prognosis and therefore treatment allocation (1). Accurate risk prediction allows optimal surveillance, prevention, and management strategies for tumor recurrence; however, these systems are inadequate for predicting recurrence, and none of them provide quantifiable risk measures. Recently, a few statistical models, such as the Korean model ( 6) and pre-and postoperative Early Recurrence After Surgery for Liver Tumor (ERASL) models ( 7), have been established specifically to predict HCC
Background Circular RNAs (circRNAs) are a class of non-coding RNAs with a loop structure, but its functions remain largely unknown. Growing evidence has revealed that circRNAs play a striking role as functional RNAs in the progression of malignant disease. However, the precise role of circRNAs in gastric cancer (GC) remains unclear. Methods CircRNAs were determined by human circRNA array analysis and quantitative reverse transcription polymerase reaction. Luciferase reporter, RNA pull down, and fluorescence in situ hybridization assays were employed to test the interaction between circPSMC3 and miR-296-5p. Ectopic over-expression and siRNA-mediated knockdown of circPSMC3, proliferation, migration and invasion in vitro, and in vivo experiment of metastasis were used to evaluate the function of circPSMC3. Results CircPSMC3 rather than liner PSMC3 mRNA was down-regulated in GC tissues, corresponding plasmas from GC patients as well as GC cell lines compared to normal controls. Lower circPSMC3 expression in GC patients was correlated with higher TNM stage and shorter overall survival. Over-expression of circPSMC3 and miR-296-5p inhibitor could inhibit the tumorigenesis of gastric cancer cells in vivo and vitro whereas co-transfection of circPSMC3 and miRNA-296-5p could counteract this effect. Importantly, we demonstrated that circPSMC3 could act as a sponge of miR-296-5p to regulate the expression of Phosphatase and Tensin Homolog (PTEN), and further suppress the tumorigenesis of gastric cancer cells. Conclusion Our study reveals that circPSMC3 can serve as a novel potential circulating biomarker for detection of GC. CircPSMC3 participates in progression of gastric cancer by sponging miRNA-296-5p with PTEN, providing a new insight into the treatment of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.