Drug delivery to the brain is challenging because of the low permeability of blood–brain barrier, and therefore, optimum concentration of chemotherapeutics in the target area specifically for glioblastoma, an aggressive brain tumor, opens a new path of research. To achieve the goal, the oral alkylating agent temozolomide was incorporated into niosomes, and the surface was modified with chlorotoxin, a small 36 amino acid peptide discovered from the venom of scorpion Leiurus quinquestriatus. Active targeting using nanosized particles facilitates an increase in the accumulation of drugs in the cerebri by 3.04-folds. Temozolomide-loaded niosomes were prepared using conventional thin-film hydration method and characterized. Niosomes coated with chlorotoxin were produced with the size of 220 ± 1.45 nm with an entrapment efficiency of 79.09 ± 1.56%. Quantitative tissue distribution studies indicate enhanced permeation of the drug into the brain because of surface modification with less deposition in the highly perfused organs.
Diabetic wound is a major problem that often needs amputation of the concerned organ in patients suffering from diabetes. In diabetes, the prolonged phase of inflammation obstructs the further phases of healing which, in turn, lead to improper healing of the wounds in diabetes. Pioglitazone (Pio) hydrochloride is an antidiabetic drug with reported anti-inflammatory properties. The aim of this study was to develop a Pio-nanostructured lipid carrier (Pio-NLC)-loaded collagen/chitosan (COL-CS) scaffold and evaluate its healing ability in diabetic wounds. The results of characterization of composite scaffolds reveal that cross-linked scaffolds possess optimum porosity, low matrix degradation, and sustained drug release compared with noncross-linked scaffolds. The in vitro studies reveal that the Pio-NLC-COL-CS scaffold was biocompatible and enhanced cell growth compared with control and NLC-COL-CS. Using the streptozotocin-induced diabetic wound model, significantly (p < 0.001) higher rates of wound contraction in Pio-NLC-COL-CS scaffold-treated group were observed in comparison with that in control and NLC-COL-CS-treated group. The enzyme-linked immunosorbent assay results indicate a significant (p < 0.001) decrease of matrix metalloproteinases-9 levels in the Pio-NLC-COL-CS-treated group compared with those in control group. Use of nanostructured lipid carrier (Pio-NLC-COL-CS) scaffold can prove to be a promising strategy for local treatment for diabetic wounds.
Diabetes mellitus (DM) is an endocrine disorder that causes increased blood glucose than usual due to insulin impairment. In DM, several complications arise in which diabetic wound (DW) is the most devastating complication. About 25% of patients with DM expected to develop DWs in their lifetime and undergo limb amputations. Even though several treatments such as surgery, debridement, wound dressings, advanced therapies were available, the overall conclusion has been that with very few exceptions, patients still suffer from limitations like pain, frequent dress changing, high rates of failure, and cost involvement. Further, the treatments involving the delivery of therapeutic agents in treating DWs have limited success due to abnormal levels of proteases in the DW environment. In this backdrop, in situ gelling injectable hydrogels have gained special attention due to their easy encapsulation of therapeutic medications and prolonged release, filling the wound defect areas, ease of handling, and minimally invasive surgical procedures. Though the in situ gelling injectable hydrogels are developed a couple of decades ago, their use for treating DW has not yet been explored thoroughly. Thus, in this review, we have covered the sequential events of DW healing, pathophysiology, current treatments, and its limitations, along with a particular emphasis on the mechanism of action of these in situ gelling injectable hydrogels treating DWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.