The inherently formed liquid crystals (LCs) of graphene oxide (GO) in aqueous dispersions severely restrict the fabrication of large-size and structure-intact graphene aerogel bulk by an industry-applicable method. Herein, by developing a surfactant-foaming sol−gel method to effectively disrupt and reconstruct the inherent GO LCs via microbubbles as templates, we achieve the large-size and structure-intact graphene hydrogel bulk (GHB). After simple freezing and air-drying, the resulting graphene aerogel bulk (GAB) with a structure-intact size of about 1 m 2 exhibits a superelasticity of up to 99% compressive strain, ultralow density of 2.8 mg cm −3 , and quick solar-thermal conversion ability. The modified GAB (GABTP) shows a high decomposition temperature (T max ) of 735 °C in air and a low heat storage capacity. These excellent performances make the GABs suitable for many practical applications, as proven in this work, including as high compressive force absorbers, high absorption materials for oils or dangerous solvents, superior solar-thermal management materials for rapid heater or controlled shelter, and high-efficiency fire-resistant and thermal insulation materials. The whole preparation process is easily scalable and cost-effective for mass production of structureintact multifunctional graphene aerogel bulk toward practical applications.
Rice grain filling is a process of conversion of sucrose into starch catalysed by a series of enzymes. Sucrose synthase (SUS) is considered as a key enzyme regulating this process. This study investigated the possible roles of sucrose and abscisic acid (ABA) in mediating the activity and expression of SUS protein of grains during grain filling in rice (Oryza sativa). Field-grown rice plants and detached cultured panicles were used as experimental materials. Several treatments, including spikelet thinning, leaf cutting, and applications of different concentrations of exogenous sucrose and ABA, were imposed during grain filling. A higher SUS activity was found in superior grains than in inferior grains in the earlier stage of grain filling, which was significantly and closely related to a higher grain filling rate and starch accumulation. An increase in sucrose concentration in grains as a result of different treatments increased both SUS activity and SUS protein expression in grains. An increase in ABA concentration gave similar results. Furthermore, effects of interactions between sucrose and ABA on the activity and expression of SUS protein in grains were also found. It was suggested that sucrose- and ABA-mediated rice grain filling is largely due to an increase in SUS activity and SUS protein expression.
At relatively low temperature (e.g, -30 oC), most flexible supercapacitors that work well at room temperature will lose their stretchability due to the poor cold intolerance of conventional electrolytes and...
Micro-supercapacitors are promising miniaturized energy storage devices that have attracted considerable research interest. However, their widespread use is limited by inefficient microfabrication technologies and their low energy density. Here, a flexible, designable micro-supercapacitor can be fabricated by a single pulse laser photonic-reduction stamping. A thousand spatially shaped laser pulses can be generated in one second, and over 30,000 micro-supercapacitors are produced within 10 minutes. The micro-supercapacitor and narrow gaps were dozens of microns and 500 nm, respectively. With the unique three-dimensional structure of laser-induced graphene based electrode, a single micro-supercapacitor exhibits an ultra-high energy density (0.23 Wh cm−3), an ultra-small time constant (0.01 ms), outstanding specific capacitance (128 mF cm−2 and 426.7 F cm−3) and a long-term cyclability. The unique technique is desirable for a broad range of applications, which surmounts current limitations of high-throughput fabrication and low energy density of micro-supercapacitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.