Microbubbles (MBs) are routinely used as contrast agents for ultrasound imaging. The use of ultrasound in combination with MBs has also attracted attention as a method to enhance drug delivery.We have developed a technology platform incorporating multiple functionalities, including imaging and therapy in a single system consisting of MBs stabilized by polyethylene glycol (PEG) coated polymeric nanoparticles (NPs). The NPs, containing lipophilic drugs and/or contrast agents, are composed of the widely used poly(butyl cyanoacrylate) (PBCA) polymer and prepared in a single step. MBs stabilized by these NPs are subsequently prepared by self-assembly of NPs at the MB air/liquid interface. Here we show that these MBs can act as contrast agents for conventional ultrasound imaging. Successful encapsulation of iron oxide NPs inside the PBCA NPs is demonstrated, potentially enabling the NPs/MBs to be used as magnetic resonance imaging (MRI) and/or molecular ultrasound imaging contrast agents. By precise tuning of the applied ultrasound pulse, the MBs burst and the NPs constituting the shell are released. This could result in increased local deposit of NPs into target tissue providing improved therapy and imaging contrast compared to freely distributed NPs.
Manganese oxide nanoparticles (MONPs) are capable of time‐dependent magnetic resonance imaging contrast switching as well as releasing a surface‐bound drug. MONPs give T2/T2* contrast, but dissolve and release T1‐active Mn2+ and L‐3,4‐dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.
Herein, we report the synthesis of differently sized gadolinium oxide nanodisks and gadolinium doped iron oxide spherical and cubic nanoparticles through the thermal decomposition of an oleate precursor.
With development in the synthesis of shape- and size-dependent gold (Au) nanostructures (NSs) and their applications in nanomedicine, one of the biggest challenges is to understand the interaction of these shapes with cancer cells. Herein, we study the interaction of Au NSs of five different shapes with glioblastoma-astrocytoma cells. Three different shapes (nanorods, tetrahexahedra, and bipyramids), possessing tunable optical properties, have been synthesized by a single-step seed-mediated growth approach employing binary surfactant mixtures of CTAB and a secondary surfactant. By the use of two-step seed-mediated approach, we obtained new NSs, named nanomakura (Makura is a Japanese word used for pillow) which is reported for the first time here. Spherical Au nanoparticles were prepared by the Turkevich method. To study NS-cell interactions, we functionalized the NSs using thiolated PEG followed by 11-Mercaptoundecanoic acid. The influence of shape and concentration of NSs on the cytotoxicity were assessed with a LIVE/DEAD assay in glioblastoma-astrocytoma cells. Furthermore, the time-dependent uptake of nanomakura was studied with TEM. Our results indicate that unlike the other shapes studied here, the nanomakura were taken up both via receptor-mediated endocytosis and macropinocytosis. Thus, from our library of different NSs with similar surface functionality, the shape is found to be an important parameter for cellular uptake.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2662-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.