Abstract-This article presents the design of RecoNoC: a compact, highly flexible FPGA-based network-on-chip (NoC), that can be easily adapted for various experiments. In this work, we enhanced this NoC with dynamically reconfigurable shortcuts. These can be used to alter the NoC's topology to adapt to the system's communication needs. The design has been implemented and tested on a Xilinx Virtex-2 Pro FPGA, using the TMAP dynamic datafolding toolflow to automatically generate the reconfigurable hardware and the software reconfiguration procedures. The results show that, using dynamic datafolding, the overhead of introducing this shortcut mechanism is limited.
Parameterised configurations are FPGA configuration bitstreams in which the bits are defined as functions of user-defined parameters. From a parameterised configuration, it is possible to quickly and efficiently derive specialised, regular configuration bitstreams by evaluating these functions. The specialised bitstreams have different properties and functionality depending on the chosen values of the parameters. The most important application of parameterised configurations is the generation of specialised configuration bitstreams for Dynamic Circuit Specialisation, a technique for optimising circuits at runtime using partial reconfiguration of the FPGA.Generating and using parameterised configurations requires a new FPGA tool flow. In this article, we present a new technology mapping algorithm for parameterised designs, called TCONMAP, that can be used to produce parameterised configurations in which both the configuration of the logic blocks and routing is a function of the parameters. In our experiments, we demonstrate that in using TCONMAP, the depth and area of the mapped circuit is close to the minimal depth and area attainable. Both Dynamic Circuit Specialisation and fine-grained modular reconfiguration are extracted by TCONMAP from the HDL description of the design requiring only simple parameter annotations.
Abstract-A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6× to 5.1× without significant performance penalties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.