Reported predictions of human in vivo hepatic clearance from in vitro data have used a variety of values for the scaling factors human microsomal protein (MPPGL) and hepatocellularity (HPGL) per gram of liver, generally with no consideration of the extent of their inter-individual variability. We have collated and analysed data from a number of sources, to provide weighted meangeo values of human MPPGL and HPGL of 32 mg g-1 (95% Confidence Interval (CI); 29-34 mg.g-1) and 99x10(6) cells.g-1 (95% CI; 74-131 mg.g-1), respectively. Although inter-individual variability in values of MPPGL and HPGL was statistically significant, gender, smoking or alcohol consumption could not be detected as significant covariates by multiple linear regression. However, there was a weak but statistically significant inverse relationship between age and both MPPGL and HPGL. These findings indicate the importance of considering differences between study populations when forecasting in vivo pharmacokinetic behaviour. Typical clinical pharmacology studies, particularly in early drug development, use young, fit, healthy male subjects of around 30 years of age. In contrast, the average age of patients for many diseases is about 60 years of age. The relationship between age and MPPGL observed in this study estimates values of 40 mg.g-1 for a 30 year old individual and 31 mg.g-1 for a 60 year old individual. Investigators may wish to consider the reported covariates in the selection of scaling factors appropriate for the population in which estimates of clearance are being predicted. Further studies are required to clarify the influence of age (especially in paediatric subjects), donor source and ethnicity on values of MPPGL and HPGL. In the meantime, we recommend that the estimates (and their variances) from the current meta-analysis be used when predicting in vivo kinetic parameters from in vitro data.
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.