Bovine milk is rich in exosomes, which contain abundant miRNAs and play important roles in the regulation of neonatal growth and development of adaptive immunity. Here, we analyzed miRNA expression profiles of bovine milk exosomes from three healthy and three mastitic cows, and then six miRNA libraries were constructed. Interestingly, we detected no scRNAs and few snRNAs in milk exosomes; this result indicated a potential preference for RNA packaging in milk exosomes. A total of 492 known and 980 novel exosomal miRNAs were detected, and the 10 most expressed miRNAs in the six samples accounted for 80-90% of total miRNA-associated reads. Expression analyses identified 18 miRNAs with significantly different expression between healthy and infected animals; the predicted target genes of differentially expressed miRNAs were significantly enriched in immune system process, response to stimulus, growth, etc. Moreover, target genes were significantly enriched in several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways including inflammatory, immune, and cancer pathways. Our survey provided comprehensive information about milk exosomes and exosomal miRNAs involved in mastitis. Moreover, the differentially expressed miRNAs, especially miR-223 and miR-142-5p, could be considered as potential candidates for mastitis.
Although emerging data support crucial roles for microRNAs (miRNAs) during adipogenesis, the detailed mechanisms remain largely unknown. In this study, it was shown that in rabbits, levels of miR-148a-3p not only increased in white adipose tissue during early stages of growth but also during in vitro cultured preadipocyte differentiation. Furthermore, overexpression of miR-148a-3p significantly upregulated the mRNA levels of PPARγ, C/EBPα, and FABP4, as well as the protein levels of PPARγ, as indicated by qPCR and western blotting analyses. Overexpression of miR-148a-3p also promoted intracellular triglyceride accumulation. In contrast, downregulation of miR-148a-3p inhibited the differentiation of rabbit preadipocytes. Next, based on target gene prediction and a luciferase reporter assay, we further demonstrated that miR-148a-3p directly targeted one of the 3' untranslated regions of PTEN. Finally, it was observed inhibition of PTEN by siRNA promoted rabbit preadipocyte differentiation. Taken together, our results suggested that miR-148a-3p could be involved in regulating rabbit preadipocyte differentiation through inhibiting expression of PTEN, which further highlighted the importance of miRNAs during adipogenesis.
Heat stress affects milk yield and quality in lactating dairy cows in summer. Bovine mammary epithelial cells (bMECs) play a key role in milk secretion, and microRNAs (miRNAs) regulate numerous functions of bMEC. Previous reports have verified that miR-216b regulated cell apoptosis through repressing target genes in several cancer cells. So, our purpose was to explore the potential involvement of miR-216b in heat stress-induced cell apoptosis in bMECs. Firstly, the heat stress model was constructed and we found that apoptotic rates of bMECs significantly increased under heat stress. The expression of miR-216b, Bax mRNA, and caspase-3 mRNA was upregulated. However, Bcl-2 mRNA level was detected to differentially downregulated. Overexpression of miR-216b remarkably downregulated the expression of caspase-3 and Bax mRNA and protein, and the mRNA and protein level of Bcl-2 was increased. Inhibition of miR-216b increased the activity of caspase-3 and Bax, and the level of Bcl-2 was inhibited. Moreover, Fas was identified as a target gene of miR-216b through bioinformatic analysis and dual-luciferase reporter assay. Fas activity was significantly inhibited and enhanced respectively after transfecting miRNA mimics and inhibitor. Finally, inhibition of Fas via the small interfering RNA (siRNA) also inhibited cell apoptosis induced by heat stress. Taken together, our results indicated that miR-216b exerted as an anti-apoptotic effect under heat stress in bMECs by targeting Fas.
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, which play important roles in animals by targeting mRNA transcripts for translational repression. Many recent studies have shown that miRNAs are involved in the control of muscle development. In this study, the expression levels of miR-221 in different tissues and during rabbit skeletal muscle satellite cells (SMSCs) differentiation were detected. Gene ontology term enrichment was used to predict the potential biological roles of miR-221. A synthetic miR-221 mimic and a miR-221 inhibitor were used to investigate the functions of miR-221 during SMSCs proliferation and differentiation to further verify the functions of miR-221 in muscle development. In this report, we compared the expression levels of miR-221 in different tissues. The expression levels of miR-221 were upregulated after the induction of differentiation, and then were gradually downregulated during SMSCs differentiation. Overexpression of miR-221 promoted SMSCs proliferation, whereas inhibiting expression restrained proliferation in the EdU and CCK-8 assays. In addition, overexpression of miR-221 led to a decline in the expression levels of the differentiation marker genes MyoG and MHC. miR-221 overexpression suppressed SMSCs myotube formation. On the contrary, inhibition of miR-221 promoted myotube formation. Our data showed that miR-221 increased SMSCs proliferation and decreased differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.