In this paper, we propose an architecture for FPGA emulation of mixed-signal systems that achieves high accuracy at a high throughput. We represent the analog output of a block as a superposition of step responses to changes in its analog input, and the output is evaluated only when needed by the digital subsystem. Our architecture is therefore intended for digitally-driven systems; that is, those in which the inputs of analog dynamical blocks change only on digital clock edges. We implemented a high-speed link transceiver design using the proposed architecture on a Xilinx FPGA. This design demonstrates how our approach breaks the link between simulation rate and time resolution that is characteristic of prior approaches. The emulator is flexible, allowing for the real-time adjustment of analog dynamics, clock jitter, and various design parameters. We demonstrate that our architecture achieves 1% accuracy while running 3 orders of magnitude faster than a comparable high-performance CPU simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.