Several researchers have suggested that the computer holds much promise as a tool for science teachers for use in their classrooms (Bork, 1979, Lunetta & Hofstein, 1981. It also has been said that there needs to be more research in determining the effectiveness of computer software (Tinker, 1983).This study compared the effectiveness of microcomputer simulated experiences with that of parallel instruction involving hands-on laboratory experiences for teaching the concept of volume displacement to junior high school students. This study also assessed the differential effect on students' understanding of the volume displacement concept using sex of the students as another independent variable. In addition, it compared the degree of retention, after 45 days, of both treatment groups.It was found that computer simulated experiences were as effective as hands-on laboratory experiences, and that males, having had hands-on laboratory experiences, performed better on the posttest than females having had the hands-on laboratory experiences. There were no significant differences in performance when comparing males with females using the computer simulation in the learning of the displacement concept. This study also showed that there were no significant differences in the retention levels when the retention scores of the computer simulation groups were compared to those that had the hands-on laboratory experiences. However, an ANOVA of the retention test scores revealed that males in both treatment conditions retained knowledge of volume displacement better than females. 0
While the performance of flash memory exceeds hard disk drives in almost every category, the cost of flash memory must come down in order to gain wider acceptance in mass storage applications. This paper describes a 3.3 Vonly 32 Mb NAND flash memory that achieves not only high performance but also low cost with a 94.9 mm2 die size, improved yields, and a simple process With 0.5 pm CMOS technology. Die size is reduced by eliminating high voltage operation on the bitlines through a self boosted program inhibit voltage generation scheme. Incremental-step-pulse programming results in a 2.3 MB/s program data rate as well as improved process variation tolerance. Interleaved data paths and a boosted wordline results in a 25 ns burst cycle time and a 24 MB/s read data rate. Maximum operating current is less than 8 mA.
A 1500 µm × 1200 µm silicon scanning mirror has been fabricated by using anodic bonding and flip chip bonding. This scanning mirror is mainly composed of two structures having vertical comb fingers. By anodic bonding between the silicon wafer and the Pyrex glass substrate, and following deep inductively coupled plasma reactive ion etching (ICPRIE), isolated comb electrodes were fabricated at the lower structure. However, gold signal lines for electrical connection to the electrodes, which were inserted between silicon and Pyrex glass, were damaged during anodic bonding. This problem was solved by using the proposed processes and signal lines were successfully fabricated with the contact resistance below several tens of ohms. By flip chip bonding, the upper and lower structures having vertical comb fingers were assembled. Vertical comb fingers of two structures were aligned with a microscope and the frames of two structures were bonded at 300 • C for 20 s using the eutectic bonding materialelectroplated AuSn. Finally, the scanning mirror was successfully fabricated and could be used for laser display as a galvanometric vertical scanner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.