Blue light-emitting diodes based on III-nitride semiconductors are nowadays widely used for solid-state lighting. They exhibit impressive figures of merit like an internal quantum efficiency close to 100%. This value is intriguing when considering the high dislocation density running throughout the InGaN/GaN quantum well (QW) active region. This striking feature is currently ascribed to carrier localization occurring in the InGaN alloy, which hinders their diffusion toward dislocations. However, it was recently reported that another source of defects, disconnected from dislocations, dramatically decreases the radiative efficiency of InGaN/GaN QWs. Those defects, present at the surface, are usually trapped in an InGaN underlayer (UL), which is grown before the QW active region. To get insight into the trapping mechanism, we varied the UL thickness, In content, and materials system (InGaN or InAlN) and studied the photoluminescence decay time at 300 K of a single InGaN/GaN QW. Our data demonstrate that defects are incorporated proportionally to the indium content in the UL. In addition, we show that those defects are created during the high-temperature growth of GaN and that they segregate at the surface even at low-temperature. Eventually, we propose an intrinsic origin for these surface defects.
The insertion of an InGaN underlayer (UL) is known to strongly improve the performance of InGaN/GaN quantum well (QW) based blue light emitting diodes (LEDs). However, the actual physical mechanism responsible for it is still unclear. We thus conduct a systematic study and investigate different hypotheses. To this aim, InGaN/GaN single (S) QWs are grown on sapphire and GaN free-standing substrates with or without InGaN UL. This allows us to conclude that (i) improvement of LED performance is due to a higher internal quantum efficiency of the InGaN/GaN SQW and (ii) reduction of structural defects is not at play. Furthermore, we show that neither the surface morphology nor the strain of the top GaN layer before the growth of the QW is affected by the InGaN UL. Finally, we find that the beneficial effect of the InGaN UL is still present after 100 nm of GaN. This result combined with band structure modelling rules out the hypothesis of higher QW oscillator strength induced by a reduction of the internal electric field due to band bending. In conclusion, we demonstrate that the increase in InGaN/GaN QW efficiency is the consequence of a reduction of non-radiative recombination centers in the QW itself, independent of the dislocation density.
In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N2O absorption spectrum has been measured.
We report on InAlN underlayer (UL) to improve the efficiency of near ultraviolet (NUV) light emitting diodes (LEDs). While InGaN UL is commonly used in high-efficiency blue LEDs it may absorb light for shorter wavelengths. InAlN lattice-matched to GaN exhibits a bandgap of 4.6 eV. This allows alleviating absorption issues in NUV LEDs. We demonstrate that the internal quantum efficiency of 405 nm single InGaN/GaN quantum well LEDs with InAlN UL is ∼70% compared to less than 10% for LEDs without UL. Excellent I–V characteristics are achieved thanks to polarization charge screening with high doping level at the InAlN/GaN interface.
Recent studies demonstrated that the performance of InGaN/GaN quantum well (QW) light emitting diodes (LEDs) can be significantly improved through the insertion of an InGaN underlayer (UL). The current working hypothesis is that the presence of the UL reduces the density of non-radiative recombination centers (NRCs) in the QW itself: during the growth of the UL, surface defects are effectively buried in the UL, without propagating towards the QW region. Despite the importance of this hypothesis, the concentration profile of defects in the quantum wells of LEDs with and without the UL was never investigated in detail. This paper uses combined capacitance-voltage and steady-state photocapacitance measurements to experimentally identify the defects acting as NRCs and to extract a depth-profile of the traps, thus proving the incorporation upon indium-reaction. Specifically: (i) we demonstrate that LEDs without UL have a high density (9.2 × 1015 cm−3) of defects, compared to samples with UL (0.8 × 1015 cm−3); (ii) defects are located near midgap (E C-1.8 eV, corresponding to E i-E T ∼ 0.3 eV), thus acting as efficient NRCs; (iii) crucially, the density of defects has a peak within the QWs, indicating that traps are segregated at the first grown InGaN layers; (iv) we propose a model to calculate trap distribution in the QW, and we demonstrate a good correspondence with experimental data. These results provide unambiguous demonstration of the role of UL in limiting the propagation of defects towards the QWs, and the first experimental characterization of the properties of the related traps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.