Anchialine caves are characterized by high levels of endemism and extreme conditions. However, few ecological studies have been conducted in these ecosystems. This study integrates biotic and abiotic parameters of two sets of cave systems with contrasting high and low species richness. Seven ecological patterns are used to explain the expected species richness and density in an anchialine cave. In addition, the population size for conspicuous macrofauna was estimated. The high impact that single-events have on anchialine fauna are also reported. These findings reinforce the conclusions of previous studies of the high extinction risk of anchialine cave fauna, and substantiate the necessity of ad hoc conservation strategies for anchialine caves.
Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown. Using standardized experiments that spanned 115° of latitude, at 36 nearshore sites along both coasts of the Americas, we found that marine predators have both higher consumption rates and consistently stronger impacts on biomass and species composition of marine invertebrate communities in warmer tropical waters, likely owing to fish predators. Our results provide robust support for a temperature-dependent gradient in interaction strength and have potential implications for how marine ecosystems will respond to ocean warming.
The Gulf of California endemic reef fish, Acanthemblemaria crockeri (Blennioidei, Chaenopsidae), reportedly has two colour morphs, one with melanic lateral spots ('Gulf' morph) and one with orange spots ('Cape' morph). In this study, we recorded colour morph in both males and females and collected mitochondrial DNA sequence data for cytochrome c oxidase I (COI) and tRNA-Pro/D-loop of specimens from throughout the Gulf to explore the genetic basis of the colour morphs. Two highly divergent (HKY + I distance = 11.9% for COI), reciprocally monophyletic lineages were identified, consistent with the presence of two parapatric species. A 30-km gap between the distributions of mitochondrial lineages roughly corresponds to a hypothesized former seaway across the Baja California peninsula north of La Paz, although the estimated divergence time (1.84 million years ago) is more recent than the hypothetical seaway (3-4 million years ago). Surprisingly, the distribution of mitochondrial species is not congruent with the distribution of either male or female colour morphs. Our analysis also revealed significant population differentiation within both species and no shared haplotypes among populations. The northern Gulf species includes four populations (NB, CB, NM and CM) corresponding to northern and central Baja and northern and central mainland sites, while the Cape species includes two populations (SB and SM) corresponding to the Baja and mainland sides of the southern Gulf. The NB/CB division corresponds to a hypothesized Plio-Pleistocene mid-peninsular seaway. The level of genetic divergence documented in this lineage is extraordinary for a marine fish with a pelagic larval stage within a semi-enclosed basin.
This study revises the taxonomic status of the formerly monotypic Archinomidae, which is nested within paraphyletic Amphinomidae according to recent phylogenetic work. We focused our taxonomic sampling to evaluate the affinities of Notopygos and genera classified as ‘fusiform’ in body shape, including Archinome and Chloeia. Prior to this study, the phylogenetic placement of Notopygos had not been evaluated. We inferred the phylogenetic relationships of Notopygos within Amphinomidae based on nuclear and mitochondrial markers, and cytochrome c oxidase subunit I genetic divergences of five Notopygos species, including the newly described Notopygos kekooa sp. n. from the Gulf of California. The phylogenetic and morphological evidence, now including Notopygos species, justified the establishment of two subfamilies within Amphinomidae. In accordance with ICZN Article 36 (Principle of Coordination), both subfamilies are presented as status novus in the nomenclature ranks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.