Objectives Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to the questionnaire responses to assess diesel exhaust exposure in the New England Bladder Cancer Study, a population-based case-control study. Methods 2,631 participants reported 14,983 jobs; 2,749 jobs were administered questionnaires (‘modules’) with diesel-relevant questions. We applied decision rules to assign exposure metrics based solely on the occupational history responses (OH estimates) and based on the module responses (module estimates); we combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed one at a time to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module, and one-by-one review estimates. Results The proportion of exposed jobs was 20–25% for all jobs, depending on approach, and 54–60% for jobs with diesel-relevant modules. The OH/module and one-by-one review had moderately high agreement for all jobs (κw=0.68–0.81) and for jobs with diesel-relevant modules (κw=0.62–0.78) for the probability, intensity, and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates. Conclusions The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies.
Objectives We used data from a large, population-based case-control study in New England to examine relationships between occupation, industry, and bladder cancer risk. Methods Lifetime occupational histories were obtained by personal interview from 1,158 patients newly diagnosed with urothelial carcinoma of the bladder between 2001 and 2004 among residents of Maine, New Hampshire, and Vermont, and from 1,402 population controls selected from Department of Motor Vehicle records (ages 30 to 64 years) or Medicare beneficiary records (65 to 79 years). Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for demographic factors, smoking, and employment in high-risk occupations other than the one being analyzed. Results Male precision metalworkers and metalworking/plasticworking machine operators had significantly elevated risks and significant trends in risk with duration of employment (precision metalworkers: OR=2.2; CI: 1.4, 3.4, Ptrend =0.0065; metalworking/plasticworking machine operators: OR=1.6; CI: 1.01, 2.6, Ptrend=0.047). Other occupations/industries for which risk increased significantly with duration of employment included: for men, textile machine operators, mechanics/repairers, automobile mechanics, plumbers, computer systems analysts, information clerks, and landscape and horticultural services industry workers; and for women, service occupations, health services, cleaning and building services, management-related occupations, electronic components and accessories manufacturing, and transportation equipment manufacturing. Men reporting use of metalworking fluids (MWF) had a significantly elevated bladder cancer risk (OR=1.7; 95% CI: 1.1, 2.5), Conclusions Our findings for metalworkers and for MWF exposure support the hypothesis that some component(s) of MWF may be carcinogenic to the bladder in humans. Our results also corroborate many other previously-reported associations between bladder cancer risk and various occupations. More detailed analyses using information collected in job-specific questionnaires administered in this study may help to identify components of MWF that may be carcinogenic, and other bladder carcinogens to which people are exposed in a variety of occupations.
Objectives Metalworking has been associated with an excess risk of bladder cancer in over 20 studies. Metalworking fluids (MWFs) are suspected as the responsible exposure, but epidemiologic data are limited. We investigated this association among men in the New England Bladder Cancer Study using state-of-the-art, quantitative exposure assessment methods. Methods Cases (n=895) and population controls (n=1,031) provided occupational histories during personal interviews. For selected jobs, exposure-oriented modules were administered to collect information on use of three MWF types: (1) straight (mineral oil, additives), (2) soluble (mineral oil, water, additives), and (3) synthetic (water, organics, additives) or semi-synthetic (hybrid of soluble and synthetic). We computed odds ratios (ORs) and 95% confidence intervals (CIs) relating bladder cancer risk to a variety of exposure metrics, adjusting for smoking and other factors. Non-metalworkers who had held jobs with possible exposure to mineral oil were analyzed separately. Results Bladder cancer risk was elevated among men who reported using straight MWFs (OR=1.7, 95% CI=1.1–2.8); risk increased monotonically with increasing cumulative exposure (p=0.041). Use of soluble MWFs was associated with a 50% increased risk (95% CI=0.96–2.5). ORs were nonsignificantly elevated for synthetic/semi-synthetic MWFs based on a small number of exposed men. Non-metalworkers holding jobs with possible exposure to mineral oil had a 40% increased risk (95% CI=1.1–1.8). Conclusions Exposure to straight MWFs was associated with a significantly increased bladder cancer risk, as was employment in non-metalworking jobs with possible exposure to mineral oil. These findings strengthen prior evidence for mineral oil as a bladder carcinogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.