Time series of soluble extracellular polymeric substance (S-EPS) and transparent exopolymer particle (TEP) fractions, as well as biological, physical and chemical parameters, were studied in natural phytoplankton assemblages at 2 macrotidal sites located in the English Channel for 3 yr. The first site, the Bay des Veys (BDV), is sheltered from prevailing winds and influenced by a high river discharge, whereas the second, Lingreville-sur Mer (LGV), is exposed to the open ocean and to dominant winds. At both sites, the highest TEP concentrations were measured in spring and summer (1735 and 3604 µg equiv X l -1 at BDV and LGV, respectively) and were correlated with phytoplankton biomass and nitrogen concentrations. During the autumn and winter, TEP dynamics were not related to phytoplankton dynamics but appeared controlled by hydrodynamics. In contrast to TEP concentrations, S-EPS did not present any seasonal dynamics and was not correlated with TEP variations. The highest amount of S-EPS was recorded in spring at LGV (25.8 mg equiv. glucose l ). The S-EPS pool was separated in 2 fractions according to the molecular weight: low (LW) and high (HW). The LW fraction was produced in higher quantity than the HW fraction, and with larger temporal fluctuations. Therefore, both S-EPS fractions seem controlled by different environmental parameters depending on the season and on the studied ecosystem. The different dynamics observed for TEP and S-EPS confirm the complexity of carbon excretion processes in phytoplankton, and the results reveal different metabolic pathways and different origins for these carbon excretions.
KEY WORDS: Transparent exopolymer particles · TEP · Soluble EPS · Diatoms · Eastern English Channel · Environmental parametersResale or republication not permitted without written consent of the publisher
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.