Single colloidal CdSe/ZnS nanocrystals are deposited at various distances from a gold film in order to improve their performance as single photon sources. Photon antibunching is demonstrated and the experimental curves are accurately fitted by theoretical equations. Emission lifetime and intensity are measured and found in excellent agreement with theoretical values. The various effects of a neighbouring gold film are discussed : interferences of the excitation beam, interferences of the fluorescence light, opening of plasmon and lossy-surface-wave modes, modification of the radiation pattern leading to a modified objective collection efficiency. At 80 nm from the gold film, when using an objective with 0.75 numerical aperture, about a 2.4-fold increase of the detected intensity is evidenced.
We report experimental and theoretical results on the photoluminescence of CdTeSe nanocrystals, embedded in a silica opaline structure by infiltration of a highly diluted solution. Strong modification of emission diagrams of embedded nanocrystals have been observed in good agreement with theoretical models. At macroscopic scale, we measured the difference of nanocrystals emission lifetime embedded either in an opal for which the emission is in the gap, or in an opal of smaller balls diameter for which the emission is outside the gap. The photonic bandgap effect leads to a lifetime increase of the order of 10%. These lifetime variations are shown to be in good agreement with the calculated local density of states modification due to the pseudogap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.