For the purpose of supporting the design and analysis of enterprise application architecture, here, we report a tailored enterprise application architecture description framework and its corresponding design method. The presented framework can effectively support serviceoriented architecting and cloud computing by creating the metadata model based on architecture content framework (ACF), DoDAF metamodel (DM2) and Cloud Computing Modelling Notation (CCMN). The framework also makes an effort to extend and improve the mapping between The Open Group Architecture Framework (TOGAF) application architectural inputs/outputs, deliverables and Department of Defence Architecture Framework (DoDAF)-described models. The roadmap of 52 DoDAF-described models is constructed by creating the metamodels of these described models and analysing the constraint relationship among metamodels. By combining the tailored framework and the roadmap, this article proposes a service-oriented enterprise application architecture development process. Finally, a case study is presented to illustrate the results of implementing the tailored framework in the Southern Base Management Support and Information Platform construction project using the development process proposed by the paper. ARTICLE HISTORY
Black phosphorus nanoribbons (PNRs) are ideal candidates for constructing electronic and optoelectronic devices owing to their unique structure and high bandgap tunability. However, the preparation of high‐quality narrow PNRs aligned along the same direction is very challenging. Here, a reformative mechanical exfoliation approach combining tape and polydimethylsiloxane (PDMS) exfoliations to fabricate high‐quality, narrow, and directed PNRs with smooth edges for the first time is developed. In this method, partially‐exfoliated PNRs are first formed on thick black phosphorus (BP) flakes via the tape exfoliation and further peeled off to obtain separated PNRs via the PDMS exfoliation. The prepared PNRs have widths from a dozen to hundreds of nanometers (down to 15 nm) and a mean length of 18 µm. It is found that the PNRs can align along a same direction and the length directions of directed PNRs are along the zigzag direction. The formation of PNRs is attributed to that the BP prefers to be unzipped along the zigzag direction and has an appropriate magnitude of interaction force with the PDMS substrate. The fabricated PNR/MoS2 heterojunction diode and PNR field‐effect transistor exhibit good device performance. This work provides a new pathway to achieve high‐quality, narrow, and directed PNRs for electronic and optoelectronic applications.
Narrow graphene nanoribbons (GNRs) and GNR/single-walled carbon nanotube (SWNT) intramolecular heterojunctions are ideal candidates to construct next-generation electronic and optoelectronic devices. However, the fabrication of high-quality long sub-5 nm wide GNRs and GNR/SWNT heterojunctions is a great challenge. Here, we report a method to produce high-quality sub-5 nm wide GNRs with smooth edges and GNR/SWNT intramolecular heterostructures via palladium-catalyzed full and partial unzipping of SWNTs, respectively. The resulting GNRs could be as narrow as 2.2 nm and had an average length of over 1 μm. By adjusting the unzipping time and the deposited positions of palladium nanoparticles, controlled multiple GNR/SWNT heterostructures were also fabricated on an individual parent SWNT. A GNR field-effect transistor (FET) constructed by a 3.1 nm wide GNR could simultaneously achieve a high on/off current ratio of 1.1 × 104 and a large mobility of 598 cm2 V–1 s–1. The photovoltaic device based on a single GNR (2.4 nm in width)/SWNT (0.8 nm in diameter) heterojunction exhibited a large open-circuit voltage (V oc) of 0.52 V and a high external power conversion efficiency (η) of 4.7% under the 1550 nm wavelength illumination of 931 mW cm–2. Our method provides a pathway to controllably prepare high-quality sub-5 nm GNRs and GNR/SWNT heterojunctions for fundamental studies and practical applications in the electronic and optoelectronic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.