Both conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiO hole transport layer (HTL) is realized successfully by 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ). Determined by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, the Fermi level (E ) of NiO HTLs is increased from -4.63 to -5.07 eV and valence band maximum (VBM)-E declines from 0.58 to 0.29 eV after F6TCNNQ doping. The energy level offset between the VBMs of NiO and perovskites declines from 0.18 to 0.04 eV. Combining with first-principle calculations, electrostatic force microscopy is applied for the first time to verify direct electron transfer from NiO to F6TCNNQ. The average power conversion efficiency of CsFAMA mixed cation PSCs is boosted by ≈8% depending on F6TCNNQ-doped NiOx HTLs. Strikingly, the champion cell conversion efficiency of CsFAMA mixed cations and MAPbI -based devices gets to 20.86% and 19.75%, respectively. Different from passivation effect, the results offer an extremely promising molecular doping method for inorganic CTLs in PSCs. This methodology definitely paves a novel way to modulate the doping in hybrid electronics more than perovskite and organic solar cells.
Dental caries and periodontal diseases have a close relationship with microbes such as Streptococcus mutans, Porphyromonas gingivalis and Fusobacterium nucleatum. Graphene oxide (GO), as the derivative of graphene, plays an important role in many areas including biology and medicine. In particular, it has been known as a promising antimicrobial nanomaterial. In this study, we focused on the antimicrobial property of GO against dental pathogens. With the utilization of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduced test, colony forming units (CFU) counting, growth curve observation, live/dead fluorescent staining, and confocal laser scanning microscopy (CLSM), we found GO nanosheets were highly effective in inhibiting the growth of dental pathogens. Transmission electron microscopy (TEM) images revealed that the cell wall and membrane of bacteria lost their integrity and the intracellular contents leaked out after they were treated by GO. Therefore, GO nanosheets would be an effective antibacterial material against dental pathogens and the potential applications in dental care and therapy are promising.
Microrods of the ferrosulfide minerals greigite (Fe3S4) and marcasite (FeS2) are selectively synthesized by an in situ magnetic‐field‐assisted hydrothermal route. Each complex microrod is composed of fine building blocks with different shapes. The unique magnetic properties of the microrods and electrical performance of a single microrod are studied. The results demonstrate that the magnetic properties of the ferrosulfide minerals are strongly related to their corresponding microstructures. The value of the low‐temperature transition increases as the greigite component in the product decreases. The combination of small‐molecule sulfur precursors and an applied magnetic field makes possible the selective synthesis of ferrosulfide minerals with different phases and distinct microstructures, underlining the fact that the magnetic field can be a useful tool as well as an independent parameter for the phase‐selective synthesis and self‐assembly of inorganic building blocks in solution chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.