Using environmental DNA (eDNA) metabarcoding, we compared fish diversity in two distinct water bodies within the Yangtze River Basin with known populations of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis; YFP): the Tian-e-Zhou Reserve and Poyang Lake. We aimed to create a fish surveying tool for use in the Yangtze River Basin, while also gaining a better understanding of the prey distribution and diversity within two of the remaining strongholds of YFP. 16S rRNA universal primers were developed to amplify fish eDNA. After high-throughput sequencing and stringent data filtering, we identified a total of 75 fish species (6 orders, 9 families, 57 genera) across seasons and regions. Nine of the 75 fish species were among the 28 known YFP prey species, three of which were detected in all water samples. Our eDNA metabarcoding identified many species that had been previously captured using traditional netting practices, but also numerous species not previously collected in these water bodies. Fish diversity was higher in Poyang Lake than in Tian-e-Zhou Reserve, as well as higher in the spring than in summer. These methods provide a broadly applicable tool to quantify fish diversity and distributions throughout the Yangtze River Basin, and to inform conservation strategies of YFP.
In plants, hexokinase (HXK, EC 2.7.1.1) involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. In this study, we found that at Phase I of grape berry development, lower hexose (glucose or fructose) levels were concomitant with higher HXK activities and protein levels. After the onset of ripening, we demonstrated a drastic reduction in HXK activity and protein levels accompanied by a rising hexose level. Therefore, our results revealed that HXK activity and protein levels had an inverse relationship with the endogenous glucose or fructose levels during grape berry development. A 51 kDa HXK protein band was detected throughout grape berry development. In addition, HXK located in the vacuoles, cytoplasm, nucleus, proplastid, chloroplast, and mitochondrion of the berry flesh cells. During grape berry development, HXK transcriptional level changed slightly, while cell wall invertase (CWINV) and sucrose synthase (SuSy) expression was enhanced after véraison stage. Intriguingly, when sliced grape berries were incubated in different glucose solutions, CWINV and SuSy expression was repressed by glucose, and the intensity of repression depended on glucose concentration and incubation time. After sliced, grape berries were treated with different glucose analogs, CWINV and SuSy expression analyses revealed that phosphorylation of hexoses by hexokinase was an essential component in the glucose-dependent CWINV and SuSy expression. In the meantime, mannoheptulose, a specific inhibitor of hexokinase, blocked the repression induced by glucose on CWINV and SuSy expression. It suggested that HXK played a major role in regulating CWINV and SuSy expression during grape berry development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.