Hyaluronic acid (HA) is a glycosaminoglycan that was first isolated and identified from the vitreous body of a bull’s eye. HA is ubiquitous in the soft connective tissues of animals and therefore has high tissue compatibility for use in medication. Because of HA’s biological safety and water retention properties, it has many ophthalmology-related applications, such as in intravitreal injection, dry eye treatment, and contact lenses. Due to its broad range of applications, the identification and quantification of HA is a critical topic. This review article discusses current methods for analyzing HA. Contact lenses have become a widely used medical device, with HA commonly used as an additive to their production material, surface coating, and multipurpose solution. HA molecules on contact lenses retain moisture and increase the wearer’s comfort. HA absorbed by contact lenses can also gradually release to the anterior segment of the eyes to treat dry eye. This review discusses applications of HA in ophthalmology.
Objectives:
The long-term use of contact lenses may damage the structure of the ocular surface and cause metabolic disorders in corneal cells. Vitamins and amino acids help maintain the physiological function of the eye. In the present study, the effects of nutrient (vitamin and amino acid) supplementation on corneal cell repair after contact lens–induced damage was investigated.
Methods:
High-performance liquid chromatography was used to quantify the nutrient contents of minimum essential medium, and the MTT assay was used to measure the viability of corneal cells. A Statens Seruminstitut rabbit cornea cellular model was established to simulate contact lens–induced keratopathy and investigate the effects of vitamin and amino acid supplementations on corneal cell repair.
Results:
The high water content lens group (78%) has a cell viability as high as 83.3%, whereas the cell viability of the low water content lens group (38%) is only 51.6%. The 32.0% difference between the two groups confirms the correlation between water content of lens and corneal viability.
Conclusions:
Vitamin B2, vitamin B12, asparagine, and taurine supplementation may help improve contact lens–induced damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.