Based on the phase-coexistence transport model, an expression for the temperature coefficient of resistivity (TCR) behavior in doped manganites is proposed. The derived maximum TCR value (TCRmax), being related to polaron binding energy, transition temperature, and disorder in doped manganites, describes the observed “universal law” that the TCRmax is decreased, when TC increases. The calculated results are strongly supported by experiments and are analyzed within the framework of a microscopic transport mechanism. Correlation of the proposed TCR behavior to the transport parameters creates an opportunity to improve the TCRmax value in doped manganites, for uncooled bolometric applications.
Boron neutron capture therapy (BNCT) is a powerful and selective anti-cancer therapy utilizing 10B-enriched boron drugs. However, clinical advancement of BCNT is hampered by the insufficient loading of B-10 drugs throughout the solid tumor. Furthermore, the preparation of boron drugs for BNCT relies on the use of the costly B-10 enriched precursor. To overcome these challenges, polymer-coated boron carbon oxynitride (BCNO) nanoparticles, with ~30% of boron, were developed with enhanced biocompatibility, cell uptake, and tumoricidal effect via BNCT. Using the ALTS1C1 cancer cell line, the IC50 of the PEG@BCNO, bare, PEI@BCNO were determined to be 0.3 mg/mL, 0.1 mg/mL, and 0.05 mg/mL, respectively. As a proof-of-concept, the engineered non-10B enriched polymer-coated BCNO exhibited excellent anti-tumor effect via BNCT due to their high boron content per nanoparticle and due to the enhanced cellular internalization and retention compared to small molecular 10B-BPA drug. The astrocytoma ALTS1C1 cells treated with bare, polyethyleneimine-, and polyethylene glycol-coated BCNO exhibited an acute cell death of 24, 37, and 43%, respectively, upon 30 min of neutron irradiation compared to the negligible cell death in PBS-treated and non-irradiated cells. The radical approach proposed in this study addresses the expensive and complex issues of B-10 isotope enrichment process; thus, enabling the preparation of boron drugs at a significantly lower cost, which will facilitate the development of boron drugs for BNCT.
Electrical transports in iron-pnictide Ba(Fe 1−x Co x ) 2 As 2 (BFCA) single crystals are heavily debated in terms of the hidden Fermi-liquid (HFL) and holographic theories. Both HFL and holographic theories provide consistent physic pictures and propose a universal expression of resistivity to describe the crossover of transports from the non-Fermi-liquid (FL) to FL behavior in these so-called 'strange metal' systems. The deduced spin exchange energy J and model-dependent energy scale W in BFCA are almost the same, or are of the same order of several hundred Kelvin for over-doped BFCA, which is in agreement with the HFL theory. Moreover, a drawn line of W/3.5 for BFCA in the higher-doping region up to the right demonstrates the crossover from non-FL-like behavior to FL-like behavior at high doping, and shows a new phase diagram of BFCA. The electronic correlation strength in superconductors has been newly probed by the normal-state Hall angle, which found that, for the first time, correlation strength can be characterized by the ratios of T c to the Fermi temperature T F , J/T F , and the transverse mass to longitudinal mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.