The effect of specimen geometry upon the parameters that govern the stress transfer (transfer length, interfacial shear strength, positively affected length and stress concentration factor) in a carbon fibre/epoxy composite was examined in detail. Five frequently employed composite geometries were considered: single fibre composite coupons incorporating discontinuous and continuous carbon fibres, multi-fibre composite tapes with a controlled inter-fibre separation, four-ply unidirectional coupons, and, finally, impregnated fibre tows. The chemistry and the curing characteristics of the matrix were kept unaltered regardless of specimen geometry. All fibre stress measurements were conducted by means of Raman microscopy.The experimental results showed that the transfer length, positively affected length (PAL) and the interfacial shear stress obtained at the location of a fibre fracture are not considerably affected by specimen geometry. In contrast, the residual fibre stress of the unloaded specimens and the stress concentration factors obtained in fibres adjacent to a fibre fracture site were found to be significantly dependent upon fibre volume fraction and specimen geometry. Figure 2. Schematic of the single (a) continuous and (b) discontinuous fibre coupon geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.