Thin SiO 2 films were grown on a Ru(0001) single crystal and studied by photoelectron spectroscopy, infrared spectroscopy and scanning probe microscopy. The experimental results in combination with density functional theory calculations provide compelling evidence for the formation of crystalline, double-layer sheet silica weakly bound to a metal substrate. DOI: 10.1103/PhysRevLett.105.146104 PACS numbers: 68.35.Àp, 68.47.Gh, 68.55.Àa Silicon dioxide (SiO 2 ) plays a key role in many modern technologies and applications that range from insulating layers in integrated circuits to supports for metal and oxide clusters in catalysts. For better understanding of structureproperty relationships on silica-based materials, particularly of reduced dimensions, thin silica films grown on metal single crystal substrates are suggested as suitable model systems that allow the facile application of many ''surface science'' techniques. It has recently been shown that crystalline silica films and nanowires can be grown on Mo(112) [1][2][3][4][5]. The ultrathin film consists of a monolayer honeycomblike network of corner-sharing [SiO 4 ] tetrahedra, thus resulting in a SiO 2:5 stoichiometry of the film. The Si atoms in these films can be partly substituted by Al in the course of preparing metal supported aluminosilicate films [6], which is the first step towards experimental modeling of catalytic centers in zeolitelike materials. However, attempts to grow thicker silica films on the Mo substrates resulted in amorphous structures [7][8][9], most likely due to the formation of strong Si-O-Mo bonds at the interface that govern the growth mode [9]. Recently, the preparation of crystalline silica films on other supports such as Pd(100) [10] and Ni(111) [11] has been reported. However, the atomic structure of the films, film surface termination, and the nature of the silica-metal interface were not determined.In this Letter, we report on the preparation and the atomic structure of well-defined silica films on Ru(0001). The experimental results, obtained by photoelectron and vibrational spectroscopies and high-resolution scanning probe microscopy, are complemented by density functional theory calculations which together provide compelling evidence for the formation of a double-layer sheet silicate, with a SiO 2 stoichiometric composition, weakly bound to a metal support. The results open new perspectives for employing a ''surface science'' approach to understand the reactivity of silicate surfaces consisting of hydrophobic Si-O-Si bonds, such as those of microporous all-silica zeolites [12]. Also, these films can be used as model supports for catalytically active metal and oxide clusters [4,13].The experiments were performed in an ultrahigh vacuum chamber equipped with low energy electron diffraction (LEED) and Auger electron spectroscopy, x-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), and scanning tunneling microscopy (STM). Atomically resolved atomic force microscopy (AFM) and STM image...
Clear as glass: The atomic structure of a metal-supported vitreous thin silica film was resolved using low-temperature scanning tunneling microscopy (STM). Based on the STM image, a model was constructed and the atomic arrangement of the thin silica glass determined (see picture). The total pair correlation function of the structural model shows good agreement with diffraction experiments performed on vitreous silica.
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science, catalysis and the field of 2D materials, a large number of theoretical and experimental studies on silica bilayers have been reported in the last years. This review aims to provide an overview on the insights gained on this material and to point out opportunities for further discovery in various fields
An atomically smooth silica bilayer is transferred from the growth substrate to a new support via mechanical exfoliation at millimeter scale. The atomic structure and morphology are maintained perfectly throughout the process. A simple heating treatment results in complete removal of the transfer medium. Low-energy electron diffraction, Auger electron spectroscopy, scanning tunneling microscopy, and environmental scanning electron microscopy show the success of the transfer steps. Excellent chemical and thermal stability result from the absence of dangling bonds in the film structure. By adding this wide band gap oxide to the toolbox of 2D materials, possibilities for van der Waals heterostructures will be broadened significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.