Marine energy resources could be crucial in meeting the increased demand for clean electricity. To enable the use of marine energy resources, developing efficient and durable offshore electrical systems is vital. Currently, there are no large-scale commercial projects with marine energy resources, and the question of how to design such electrical systems is still not settled. A natural starting point in investigating this is to draw on experiences and research from offshore wind power. This article reviews different collection grid topologies and key components for AC and DC grid structures. The review covers aspects such as the type of components, operation and estimated costs of commercially available components. A DC collection grid can be especially suitable for offshore marine energy resources, since the transmission losses are expected to be lower, and the electrical components could possibly be made smaller. Therefore, five DC collection grid topologies are proposed and qualitatively evaluated for marine energy resources using submerged and non-submerged marine energy converters. The properties, advantages and disadvantages of the proposed topologies are discussed, and it is concluded that a suitable electrical system for a marine energy farm will most surely be based on a site-specific techno-economic analysis.
The power delivered by a voltage source inverter needs to be filtered to fulfill grid code requirements. A commonly used filter technology is the LCL-filter. An issue with the LCL-filter is the occurrence of a resonance peak, which can be mitigated with active or passive damping methods. The transfer function of the filter is often used to investigate the frequency response of the system and propose damping methods. The use of an LC-filter combined with a power transformer to form an LCL-filter has not been extensively investigated. Therefore, the study in this article introduces a model for an LC-filter and power transformer for the grid connection and a derived transfer function for the model. The transfer function for the system is validated with simulations and experimental investigations. The results from simulations and the results from a direct solution of the derived analytical function overlap almost perfectly. The magnitudes of the experimental results are approximately 1 dB lower than the simulation and analytical results before the resonance frequency. At the resonance frequency, the experimental results are approximately 13.4 dB lower. The resonance frequency, however, occurs at approximately the same frequency. It is also concluded that the system is significantly damped.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.