An experimental station for marine current power has been installed in a river. The station comprises a vertical axis turbine with a direct-driven permanent magnet synchronous generator. In measurements of steady-state operation in varying flow conditions, performance comparable to that of turbines designed for significantly higher flow speeds is achieved, demonstrating the viability of electricity generation in low speed (below 1.5 m/s) marine currents.
Some countries are facing issues on freshwater and electricity production, which can be addressed with the use of renewable energy powered desalination systems. In the following study, a reverse osmosis desalination plant powered by marine current energy converters is suggested. The marine current energy converters are designed at Uppsala University in Sweden, specifically for utilizing low water speeds (1-2 m/s). Estimations on freshwater production for such a system, in South Africa, facing the Indian Ocean was presented and discussed. It is concluded that the desalination plant cannot by itself supply freshwater for a population all the time, due to periods of too low water speeds (<1 m/s), but for 75% of the time. By using ten marine current energy converters, each with a nominal power rating of 7.5 kW, combined with a reverse osmosis desalination plant and water storage capacity of 2800 m 3 , it is possible to cover the basic freshwater demand of 5000 people. More studies on the hydrokinetic resource of the Western Indian Ocean, system cost, technology development, environmental and social aspects are necessary for more accurate results.
This paper investigates three load control methods for a marine current energy converter using a vertical axis current turbine (VACT) mounted on a permanent magnet synchronous generator (PMSG). The three cases are; a fixed AC load, a fixed pulse width modulated (PWM) DC load and DC bus voltage control of a DC load. Experimental results show that the DC bus voltage control reduces the variations of rotational speed by a factor of 3.5 at the cost of slightly increased losses in the generator and transmission lines. For all three cases, the tip speed ratio λ can be kept close to the expected λ opt . The power coefficient is estimated to be 0.36 at λ opt ; however, for all three cases, the average extracted power was about ∼ 19%. A maximum power point tracking (MPPT) system, with or without water velocity measurement, could increase the average extracted power.
Marine energy resources could be crucial in meeting the increased demand for clean electricity. To enable the use of marine energy resources, developing efficient and durable offshore electrical systems is vital. Currently, there are no large-scale commercial projects with marine energy resources, and the question of how to design such electrical systems is still not settled. A natural starting point in investigating this is to draw on experiences and research from offshore wind power. This article reviews different collection grid topologies and key components for AC and DC grid structures. The review covers aspects such as the type of components, operation and estimated costs of commercially available components. A DC collection grid can be especially suitable for offshore marine energy resources, since the transmission losses are expected to be lower, and the electrical components could possibly be made smaller. Therefore, five DC collection grid topologies are proposed and qualitatively evaluated for marine energy resources using submerged and non-submerged marine energy converters. The properties, advantages and disadvantages of the proposed topologies are discussed, and it is concluded that a suitable electrical system for a marine energy farm will most surely be based on a site-specific techno-economic analysis.
This paper validates a simulation model that couples an electrical model in Simulink with a hydrodynamic vortex-model by comparing with experimental data. The simulated system is a vertical axis current turbine connected to a permanent magnet synchronous generator in a direct drive configuration. Experiments of load and no load operation were conducted to calibrate the losses of the turbine, generator and electrical system. The power capture curve of the turbine has been simulated as well as the behaviour of a step response for a change in tip speed ratio. The simulated results agree well with experimental data except at low rotational speed where the accuracy of the calibration of the drag losses is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.