Cytoplasmic DNA triggers activation of the innate immune system. Although 'downstream' signaling components have been characterized, the DNA-sensing components remain elusive. Here we present a systematic proteomics screen for proteins that associate with DNA, 'crossed' to a screen for transcripts induced by interferon-beta, which identified AIM2 as a candidate cytoplasmic DNA sensor. AIM2 showed specificity for double-stranded DNA. It also recruited the inflammasome adaptor ASC and localized to ASC 'speckles'. A decrease in AIM2 expression produced by RNA-mediated interference impaired DNA-induced maturation of interleukin 1beta in THP-1 human monocytic cells, which indicated that endogenous AIM2 is required for DNA recognition. Reconstitution of unresponsive HEK293 cells with AIM2, ASC, caspase-1 and interleukin 1beta showed that AIM2 was sufficient for inflammasome activation. Our data suggest that AIM2 is a cytoplasmic DNA sensor for the inflammasome.
We identify PICH (Plk1-interacting checkpoint "helicase"), a member of the SNF2 ATPase family, as an interaction partner and substrate of Plk1. Following phosphorylation of PICH on the Cdk1 site T1063, Plk1 is recruited to PICH and controls its localization. Starting in prometaphase, PICH accumulates at kinetochores and inner centromeres. Moreover, it decorates threads that form during metaphase before increasing in length and progressively diminishing during anaphase. PICH-positive threads connect sister kinetochores and are dependent on tension, sensitive to DNase, and exacerbated in response to premature loss of cohesins or inhibition of topoisomerase II, suggesting that they represent stretched centromeric chromatin. Depletion of PICH causes the selective loss of Mad2 from kinetochores and completely abrogates the spindle checkpoint, resulting in massive chromosome missegregation. These data identify PICH as a novel essential component of checkpoint signaling. We propose that PICH binds to catenated centromere-related DNA to monitor tension developing between sister kinetochores.
Antiviral innate immunity relies on the recognition of microbial structures. One such structure is viral RNA that carries a triphosphate group on its 5' terminus (PPP-RNA). By an affinity proteomics approach with PPP-RNA as the 'bait', we found that the antiviral protein IFIT1 (interferon-induced protein with tetratricopeptide repeats 1) mediated binding of a larger protein complex containing other IFIT family members. IFIT1 bound PPP-RNA with nanomolar affinity and required the arginine at position 187 in a highly charged carboxy-terminal groove of the protein. In the absence of IFIT1, the growth and pathogenicity of viruses containing PPP-RNA was much greater. In contrast, IFIT proteins were dispensable for the clearance of pathogens that did not generate PPP-RNA. On the basis of this specificity and the great abundance of IFIT proteins after infection, we propose that the IFIT complex antagonizes viruses by sequestering specific viral nucleic acids.
SummaryLipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.