The paper presents a new index for assessing water trophy and organic pollution. It is based on only true aquatic macrophytes -being calculated on species score, coefficient of ecological amplitude and degree of cover. The method was tested in an acidic lowland river and an alkaline mountain river, and is shown to be validated by bio-indication scales based on macrophyte communities. The practical interest is discussed regarding the Water Framework Directive.
Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
AbstractPhytoplankton constitute a diverse array of short-lived organisms which derive their nutrients from the water column of lakes. These features make this community the most direct and earliest indicator of the impacts of changing nutrient conditions on lake ecosystems. It also makes them particularly suitable for measuring the success of restoration measures following reductions in nutrient loads. This paper integrates a large volume of work on a number of measures, or metrics, developed for using phytoplankton to assess the ecological status of European lakes, as required for the Water Framework Directive (WFD). It assesses the indicator strength of these metrics, specifically in relation to representing the impacts of eutrophication. It also examines how these measures vary naturally at different locations within a lake, as well as between lakes, and how much variability is associated with different replicate samples, different months within a year and between years. On the basis of this analysis, three of the strongest metrics (chlorophyll-a, Phytoplankton Trophic Index (PTI) & cyanobacterial biovolume) are recommended for use as robust measures for assessing the ecological quality of lakes in relation to nutrient enrichment pressures and a minimum recommended sampling frequency is provided for these three metrics.
The concept of “reference conditions” describes the benchmark against which current conditions are compared when assessing the status of water bodies. In this paper we focus on the establishment of reference conditions for European lakes according to a phytoplankton biomass indicator—the concentration of chlorophyll-a. A mostly spatial approach (selection of existing lakes with no or minor human impact) was used to set the reference conditions for chlorophyll-a values, supplemented by historical data, paleolimnological investigations and modelling. The work resulted in definition of reference conditions and the boundary between “high” and “good” status for 15 main lake types and five ecoregions of Europe: Alpine, Atlantic, Central/Baltic, Mediterranean, and Northern. Additionally, empirical models were developed for estimating site-specific reference chlorophyll-a concentrations from a set of potential predictor variables. The results were recently formulated into the EU legislation, marking the first attempt in international water policy to move from chemical quality standards to ecological quality targets.
Nitrogen loading to the Bassin d'Arcachon coastal lagoon (SW France) was evaluated by studying land-use and nitrogen output in its 3001 km2 catchment. At present, the catchment is dominated by forestry (79%), while intensive agriculture occupies 9% of the surface. The N-output of two hydrological subunits, i.e. the Tagon subunit dominated by pine forestry and the Arriou II subunit comprising both forestry and intensive agriculture, were monitored for a seven year period (1996)(1997)(1998)(1999)(2000)(2001)(2002). From these observations it was calculated that forestry contributes on average 1.6 kg total N ha−1 yr−1, which is dominated by organic nitrogen (DON + PON are 70% of N). On an areal basis, intensive agriculture contributes 26 times more than forestry, i.e. 41.6 kg total N ha−1 yr−1, which is mainly in the form of nitrate (65% of N). These data were upscaled to the catchment and the upscaling was validated by comparison to gauged nitrogen throughputs for the catchment of the Leyre river that is the major tributary to the system. Taking into account the other known N sources and the interannual variability in the catchment it was estimated that nitrogen loading to the lagoon was on average 90 kg ha−1 yr−1 (range from 54 to 126 kg ha−1 yr−1). The sandy soils of the catchment have a clear potential for denitrification, but anoxic conditions (waterlogged) and input of organic matter to fuel this process are required. Currently, agricultural practices and spatial planning do not make use of this potential. Nitrogen loading in the Bassin d'Arcachon is reflected by 10-40 μM nitrate concentrations in winter, which became depleted during spring as a result of uptake by vegetation. Short-term uptake experiments showed that the macroalga Monostroma obscurum is well adapted to temperatures between 10 to 20 °C and competitive with respect to the seagrass Zostera noltii when the nitrate concentrations are above 10 μM. Spring conditions with high nitrate and high insolation are therefore favourable for M. obscurum and this species presents a high risk for algal blooming. In contrast, the macroalga Enteromorpha clathrata well adapted to summertime temperatures around 25 °C, forms occasionally blooms in the lagoon. This phenomenon is limited due to the low DIN concentrations in summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.