BackgroundNitric oxide (NO), an important signaling molecule with biological functions, has antimicrobial activity against a variety of pathogens including viruses. To our knowledge, little information is available about the regulatory effect of NO on porcine circovirus type 2 (PCV2) infection. This study was conducted to investigate the antiviral activity of NO generated from S-nitrosoglutathione (GSNO), during PCV2 infection of PK-15 cells and BALB/c mice.ResultsGSNO released considerable NO in the culture medium of PK-15 cells, and NO was scavenged by its scavenger hemoglobin (Hb) in a dose-dependent manner. NO strongly inhibited PCV2 replication in PK-15 cells, and the antiviral effect was reversed by Hb. An in vivo assay indicated that GSNO treatment reduced the progression of PCV2 infection in mice, evident as reductions in the percentages of PCV2-positive sera and tissue samples and in the viral DNA copies in serum samples. GSNO also improved the growth performance and immune organs (spleens and thymuses) of the PCV2-infected mice to some degree.ConclusionsOur data demonstrate that the NO-generating compound GSNO suppresses PCV2 infection in PK-15 cells and BALB/c mice, indicating that NO and its donor, GSNO, have potential value as antiviral drugs against PCV2 infection.
Background: Duck hepatitis A virus type 3 (DHAV-3) is one of the most harmful pathogens in the duck industry. However, the molecular mechanism underlying DHAV-3 infection in ducklings remains poorly understood. To study the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in DHAV-3 infection in ducklings, we conducted global miRNA and mRNA expression profiling of duckling liver tissues infected with lethal DHAV-3 by high-throughput sequencing. Results: We found 156 differentially expressed miRNAs (DEMs) and 7717 differentially expressed genes (DEGs) in livers of mock-infected and DHAV-3-infected duckling. A total of 19,606 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of these DEMs and DEGs. Moreover, immune-related pathways, including the cytokine-cytokine receptor interaction, apoptosis, Toll-like receptor, Jak-STAT, and RIG-I-like receptor signaling pathway, were significantly enriched through analyzing functions of mRNAs in the network in response to DHAV-3 infection. Furthermore, apl-miR-32-5p, apl-miR-125-5p, apl-miR-128-3p, apl-miR-460-5p, and novel-m0012-3p were identified as potential regulators in the immune-related signaling pathways during DHAV-3 infection. And some host miRNAs were predicted to target the DHAV-3 genome. Conclusions: This is the first integrated analysis of miRNA and mRNA in DHAV-3-infected ducklings. The results indicated the important roles of miRNAs in regulating immune response genes and revealed the immune related miRNA-mRNA regulation network in the DHAV-3-infected duckling liver. These findings increase our knowledge of the roles of miRNAs and their target genes in DHAV-3 replication and pathogenesis. They also aid in the understanding of host-virus interactions.
Porcine circovirus-like virus P1 is an important pathogen of the current pig industry, the infection mechanism is not entirely clear. Wnt signaling pathway plays an important role in the growth of young animals and infection of some viruses. This study was designed to demonstrate the effects of P1 infection on the Wnt signaling pathway. In vivo experiments, we demonstrated the down-regulatory effects of P1 infection in piglets and mice on the downstream components expression levels of Wnt signaling pathway, and the effects of Wnt signaling pathway activation on the pathogenesis of P1. In vitro studies, we found P1 infection down-regulated protein level of β-catenin and mRNA level of mmp2, prevented the β-catenin from entering into nucleus, abolished the TCF/LEF promoter activity, proved that P1 could inhibit the activation of Wnt signaling pathway in vitro. Finally, we found that VP1 of P1 virus also had the inhibitory effects on Wnt signaling pathway in vitro, elucidated the mechanism of P1’s inhibitory effects on the Wnt signaling pathway and offered the possibility that the suppression of Wnt signaling pathway was involved in the post-weaning multisystemic wasting syndrome (PMWS), laying a foundation for elucidating the pathogenesis of P1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.