In this study the chitosan/collagen/icariin composite scaffolds for nerve regeneration were produced by blending and crosslinking chitosan with collagen and icariin. The microstructure of the composite scaffolds was observed by scanning electron microscopy. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide and attachment assays were conducted, respectively, to investigate the biocompatibility of the scaffolds. Cell cultural tests showed that the channel-structured porous scaffolds acted as a positive factor to support connective nerve cell growth. After culture, cells showed a clear flow trend to move close to the composite scaffolds in culture solution, arranging in spiral-like, and aligned parallel to the orientation of the channel structure on the surface of scaffolds. When compared to pure chitosan and chitosan/collagen scaffolds, Schwann cells and PC12 cells on the chitosan/collagen/icariin composite scaffolds exhibited the greatest proliferation and longest average neurite length. These results suggested that the chitosan/collagen/icariin composite scaffolds are potential cell carriers in nerve tissue engineering.
The spherical nano-sized bioactive particles in the system of CaO-P2O5-SiO2 were bio-mimetically synthesized using micro-emulsion method. The microstructures and properties of the bio- mimetic nano-materials were characterized using XRD, FTIR, SEM/EDAX and TEM techniques. It was indicated that the nano-particles possessed glassy structural characteristics. The porous composite for bone tissue reconstruction was prepared by compounding poly (hydroxybutyrate-2-co-2-hydroxyvalerate) (PHBV) and the nano-particles of bio-mimetic bioactive glasses (BMBG). Bone-like hydroxyl- carbonate-apatite (HCA) could formed on the surface of porous composite by immersing the composite in simulated body fluid (SBF) at 37°C for 8 hours. With increase of immersion time, the morphology of HCA changed from spherical into flake-like crystals. The study on cells attachment of the porous PHBV/BMBG composite proved that the material possessed satisfactory bioactivity, bio-mineralization function and cells biocompatibility.
The PCL plates hydrolyzed by NaOH aqueous solutions and carboxylate groups were
introduced onto the surfaces of specimen. Specimens were treated by CaCl2 and K2HPO4⋅3H2O under
the normal-pressure condition and low-pressure of 103 Pa condition for 30min separately. Dense and
uniform bone-like layers could be formed on the surface of specimens after mineralizing for less than
24h in simulated body fluids (SBF). The low-pressure condition could accelerate the formation of
apatite layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.