Rice is a staple food for more than half of the world’s population. The discrimination of geographical origin of rice has emerged as an important issue to prevent mislabeling and adulteration problems and ensure food quality. Here, the discrimination of Thai Hom Mali rice (THMR), registered as a European Protected Geographical Indication (PGI), was demonstrated. Elemental compositions (Mn, Rb, Co, and Mo) and stable isotope (δ18O) in the rice were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and elemental analyzer isotope ratio mass spectrometry (EA-IRMS), respectively. The recoveries and precisions of all elements were greater than 98% and lower than 9%, respectively. The analytical precision (±standard deviation) was below ±0.2‰ for δ18O measurement. Mean of Mn, Rb, Co, Mo, and δ18O levels was 14.0 mg kg−1, 5.39 mg kg−1, 0.049 mg kg−1, 0.47 mg kg−1, and 25.22‰, respectively. Only five valuable markers combined with radar plots and multivariate analysis, linear discriminant analysis (LDA) could distinguish THMR cultivated from three contiguous provinces with correct classification and cross-validation of 96.4% and 92.9%, respectively. These results offer valuable insight for the sustainable management and regulation of improper labeling regarding geographical origin of rice in Thailand and other countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.