The present study investigates the production and partial biochemical characterization of an extracellular thermostable xylanase from the Bacillus oceanisediminis strain SJ3 newly recovered from Algerian soil using three phase partitioning (TPP). The maximum xylanase activity recorded after 2 days of incubation at 37 °C was 20.24 U/ml in the presence of oat spelt xylan. The results indicated that the enzyme recovered in the middle phase of TPP system using the optimum parameters were determined as 50% ammonium sulfate saturation with 1.0:1.5 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 10 °C, respectively. The xylanase was recovered with 3.48 purification fold and 107% activity recovery. The enzyme was optimally active at pH 7.0 and was stable over a broad pH range of 5.0–10. The optimum temperature for xylanase activity was 55 °C and the half-life time at this temperature was of 6 h. At this time point the enzyme retained 50% of its activity after incubation for 2 h at 95 °C. The crude enzyme resist to sodium dodecyl sulfate and β-mercaptoethanol, while all the tested ions do not affect the activity of the enzyme. The recovered enzyme is, at least, stable in tested organic solvents except in propanol where a reduction of 46.5% was observed. Further, the stability of the xylanase was higher in hydrophobic solvents where a maximum stability was observed with cyclohexane. These properties make this enzyme to be highly thermostable and may be suggested as a potential candidate for application in some industrial processes. To the best of our knowledge, this is the first report of xylanase activity and recoverey using three phase partitioning from B. oceanisediminis.
Nanotechnology is an emerging field in the food industry that will be important for future industrial production to address rising customer concerns and expectations for natural, nutritious, and healthful food items. People are increasingly motivated to purchase unprocessed food or even high-quality processed foods with minimum chemical additives, highlighting the need to investigate natural alternatives for commercial purposes. Natural compounds are becoming more popular among consumers since they are safer than synthetic chemical additions; however, their most functional compounds are sensitive to the adverse conditions of processing and the digestive tract, impairing their use in food matrices, and industrial-scale applications. Nowadays, nanoencapsulation of natural products can be the most suitable nanotechnology to improve stability, solubility, and bioavailability. The nanostructure can be incorporated into food during production, processing, packaging, and security. Despite the many studies on nanoencapsulation, there is still some misunderstanding about nanoencapsulation systems and preparation techniques. This review aims to categorize different nanoencapsulation techniques (chemical, physicochemical, and physicomechanical), highlight eco-friendly methods, and classify the nanoencapsulation systems as groups (polymer, lipidic and metallic). The current review summarizes recent data on the nanoencapsulation of natural compounds in the food industry that has been published since 2015 until now. Finally, this review presents the challenges and future perspectives on the nanoencapsulation of bioactive compounds in food science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.