Some studies of birds suggest that the development of the skeleton may invoke a constraint on the rate of postnatal growth. Other studies have shown that the eggshell is the major source of calcium for skeletal development of the embryo. To test whether avian growth rate is indeed associated with different patterns of skeletal development, we compared the degree of skeletal ossification of the long bones of the wing and the leg of one slowly growing precocial species (quail Coturnix japonica) with that of two rapidly growing altricial species (starling Sturnus vulgaris and fieldfare Turdus pilaris). The degree of skeletal ossification of the long bones of the wings and legs of lines of quails that had undergone long-term selection for high-and low-growth rate, respectively, also was compared with a non-selected control line. Next, the fine structure of the inner eggshell surface (mammillary layer) of both pre-and post-incubated eggs, i.e. before and after embryonic development/calcium removal was compared. The data show that the skeleton of the more rapidly growing species and lines was less ossified than that of the more slowly growing ones. This difference appeared to be associated with different rates of calcium removal from the eggshell. Removal was more extensive in eggs of quail than in eggs of starling and fieldfare, i.e. more extensive in shells with a high number of mammillary tips per unit of surface area than in shells with a lower number. It is therefore concluded that growth rate is of fundamental importance for the pattern of skeletal development. Moreover, the mammillary density varies between different bird species, it is suggested, in order to support the different rates of calcium removal by developing embryos.
It was shown in the mathematical model described elsewhere that when growth rate of the chicks is maximized and not constrained by the food availability, the optimal relationship between body mass and alimentary tract mass should conform to a single straight line, or two‐, or three‐segmented straight lines. Here, we present the data on growth of 11 bird species, and we test the model using the mass of intestines as an indicator of growth of the alimentary tract. The results support the predictions of the model for altricial species and contradict them for precocials. Since precocial species examined here were not food‐limited, we suggest that the lack of optimal growth of their alimentary tract is inherent to their mode of development. This may account for their lower growth rate, as compared to altricials. The existence of the optimal growth of the alimentary tract in altricial nestlings suggests that under natural conditions the food is much more abundant than it is generally assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.